4 research outputs found

    Towards high fidelity mapping of global inland water quality using earth observation data

    Get PDF
    This body of work aims to contribute advancements towards developing globally applicable water quality retrieval models using Earth Observation data for freshwater systems. Eutrophication and increasing prevalence of potentially toxic algal blooms among global inland water bodies have become a major ecological concersn and require direct attention. There is now a growing necessity to develop pragmatic approaches that allow timely and effective extrapolation of local processes, to spatially resolved global products. This study provides one of the first assessments of the state-ofthe-art for trophic status (chlorophyll-a) retrievals for small water bodies using Sentinel-3 Ocean and Land Color Imager (OLCI). Multiple fieldwork campaigns were undertaken for the collection of common aquatic biogeophysical and bio-optical parameters that were used to validate current atmospheric correction and chlorophyll-a retrieval algorithms. The study highlighted the difficulties of obtaining robust retrieval estimates from a coarse spatial resolution sensor from highly variable eutrophic water bodies. Atmospheric correction remains a difficult challenge to operational freshwater monitoring, however, the study further validated previous work confirming applicability of simple, empirically derived retrieval algorithms using top-of-atmosphere data. The apparent scarcity of paired in-situ optical and biogeophysical data for productive inland waters also hinders our capability to develop and validate robust retrieval algorithms. Radiative transfer modeling was used to fill this gap through the development of a novel synthetic dataset of top-of-atmosphere and bottom-of-atmosphere reflectances, which attempts to encompass the immense natural optical variability present in inland waters. Novel aspects of the synthetic dataset include: 1) physics-based, two-layered, size and type specific phytoplankton IOPs for mixed eukaryotic/cyanobacteria 6 assemblages, 2) calculations of mixed assemblage chl-a fluorescence, 3) modeled phycocyanin concentration derived from assemblage based phycocyanin absorption, 4) and paired sensor-specific TOA reflectances which include optically extreme cases and contribution of green vegetation adjacency. The synthetic bottom-of-atmosphere reflectance spectra were compiled into 13 distinct optical water types similar to those discovered using in-situ data. Inspection showed similar relationships and ranges of concentrations and inherent optical properties of natural waters. This dataset was used to calculate typical surviving water-leaving signal at top-of-atmosphere, as well as first order calculations of the signal-to-noise-ratio (SNR) for the various optical water types, a first for productive inland waters, as well as conduct a sensitivity analysis of cyanobacteria detection from top-of-atmosphere. Finally, the synthetic dataset was used to train and test four state-of-the-art machine learning architectures for multi-parameter retrieval and cross-sensor capability. Initial results provide reliable estimates of water quality parameters and inherent optical properties over a highly dynamic range of water types, at various spectral and spatial sensor resolutions. It is hoped the results of this work incrementally improves inland water Earth observation on multiple aspects of the forward and inverse modelling process, and provides an improvement in our capabilities for routine, global monitoring of inland water quality

    Nonparametric statistical downscaling for the fusion of in-lake and remote sensing data

    Get PDF
    Lakes are vital components of the global biosphere, supporting complex ecosystems and playing important roles in the global biogeochemical cycle. However, they are vulnerable to the threat from climate change and their responses to climate forcing, eutrophication and other pressures, and their possibly confounding interactions, are not yet well understood. Monitoring lake health is therefore essential, in order to understand the changing patterns over space and time. Traditionally, in-situ data, which are collected directly from within lakes and analysed in laboratories, have been available for analysis. However, although these data are assumed to be accurate within measurement error, they are expensive to collect, so that few, if any, in-situ sampling locations are available for each lake, often with infrequent sampling at each location. On the other hand, remotely-sensed data, which are derived from reflectance measurements of the Earth's surface, obtained from satellites, have recently become widely available. These data have good spatial coverage of up to 300 metre resolution, covering entire lakes, often with a monthly-average time-scale, but they must firstly be calibrated with the in-situ data to ensure accuracy, before inferences are made. The data for this research were provided by the GloboLakes project (www.globolakes.ac.uk), which is a consortium research project that is investigating the state of lakes and their responses to environmental drivers on a global scale. The research primarily focusses on log(chlorophyll-a) data for Lake Balaton, in Hungary, and for the Great Lakes of North America. The key question of interest for this research is: ``How can data fusion be performed for in-situ and remotely-sensed lake water quality data, accounting for the spatiotemporal change of support between the point-location, point-time in-situ data and the grid-cell-scale, monthly-averaged remotely-sensed data, producing a fused dataset that takes accuracy from the in-situ data and spatial and temporal information from the remotely-sensed data?" In order to answer this question, this thesis presents the following work: An initial analysis of the data for Lake Balaton motivates the following work, by demonstrating the spatial and temporal patterns in the data, using mixed-effects models, generalised additive models, kriging and principal components analysis. Following the identification of statistical downscaling as an appropriate method for fusion of the data, statistical downscaling models are developed, specifically in the framework of Bayesian hierarchical models with spatially-varying coefficients, for the novel application to data for log(chlorophyll-a), producing fully calibrated maps of fused data across lake surfaces, with associated comprehensive uncertainty measures. Bivariate and multiple-lakes statistical downscaling models are developed and applied, motivated by the assumption that sharing information between variables and between lakes can improve the accuracy of model predictions. The statistically novel method of nonparametric statistical downscaling is developed, to account for both the spatial and temporal aspects of the change of support between the in-situ and remotely-sensed data. Using methodology from both functional data analysis and statistical downscaling, the model treats in-situ and remotely-sensed data at each location as observations of smooth functions over time, estimated using bases, with the basis coefficients related via a spatially-varying coefficient regression. This is computed within a Bayesian hierarchical model, enabling the calculation of comprehensive uncertainties. This thesis presents the background, motivation, model development and application of the novel method of nonparametric statistical downscaling, filling the gap in the literature of accounting for changing temporal support in statistical downscaling modelling. Results are presented throughout this thesis, to demonstrate the utility of the method for real lake water quality data

    Harmonic analysis of Lake Balaton phytoplankton blooms using 9 years of MERIS-derived chlorophyll-A

    No full text
    This study is the first application of harmonic analysis to remotely sensed chlorophyll-a concentration in lakes. Freshwater phytoplankton phenology can track the development of algal blooms in lakes. The dynamics of algal blooms in Lake Balaton is analyzed over 9 years by harmonic analysis of MERIS-derived chlorophyll-a estimates. An analysis of the significance of the individual harmonic terms at each significant frequency provides the amplitudes and phases. Four lake basins are analyzed and phenological indicators are presented. The basins show distinct algal bloom phenologies

    Book of short Abstracts of the 11th International Symposium on Digital Earth

    Get PDF
    The Booklet is a collection of accepted short abstracts of the ISDE11 Symposium
    corecore