21,287 research outputs found

    Nonlinear optics and light localization in periodic photonic lattices

    Full text link
    We review the recent developments in the field of photonic lattices emphasizing their unique properties for controlling linear and nonlinear propagation of light. We draw some important links between optical lattices and photonic crystals pointing towards practical applications in optical communications and computing, beam shaping, and bio-sensing.Comment: to appear in Journal of Nonlinear Optical Physics & Materials (JNOPM

    User's manual for a computer program to calculate discrete frequency noise of conventional and advanced propellers

    Get PDF
    A user's manual is presented for a computer program for the calculation of discrete frequency noise of conventional and advanced propellers. The structure of the program and the subroutines describing the input functions are discussed. Input variables and their default values and the variables in the output data sheet are defined. Two versions of the program are available. These differ only in the graphic output capability. One version has only printed output capability. A second version with extensive graphic output capability is available for the computer system at Langley. This Manual includes four detailed examples of both the printed and graphic outputs. These examples may be reproduced by users to check their code on their computer system

    The homogenisation of Maxwell's equations with applications to photonic crystals and localised waveforms on metafilms

    Full text link
    An asymptotic theory is developed to generate equations that model the global behaviour of electromagnetic waves in periodic photonic structures when the wavelength is not necessarily long relative to the periodic cell dimensions; potentially highly-oscillatory short-scale detail is encapsulated through integrated quantities. The theory we develop is then applied to two topical examples, the first being the case of aligned dielectric cylinders, which has great importance in the modelling of photonic crystal fibres. We then consider the propagation of waves in a structured metafilm, here chosen to be a planar array of dielectric spheres. At certain frequencies strongly directional dynamic anisotropy is observed, and the asymptotic theory is shown to capture the effect, giving highly accurate qualitative and quantitative results as well as providing interpretation for the underlying change from elliptic to hyperbolic behaviour

    Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the Last Scattering Surface at redshift z∼z\sim1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During 2003 the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight into the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. In this paper we review the experimental challenges in high precision CMB experiments and discuss the future perspectives opened by second and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy & Astrophysics Astrophysiscs" - Vol I

    Sensing array for coherence analysis of modulated aquatic chemical plumes

    Get PDF
    An electrochemical sensor array can provide information about the spatial and temporal distribution of chemicals in liquid turbulent plumes. Planar laser induced fluorescence (PLIF) and amperometric sensor arrays were used to record signals from modulated chemical plumes released into a recirculating aquatic flume. Coherence analysis was applied to extract the frequency components contained in the sensor response. Effects due to release distance, modulation frequency, and array orientation were investigated. This study has demonstrated that frequency encoded information can be extracted from a turbulent chemical plume using an array of amperometric sensors with optimized three-dimensional geometry and tuning.M.S.Committee Chair: Janata, Jiri; Committee Member: Lyon, Andrew; Committee Member: Weissburg, Mar
    • …
    corecore