2 research outputs found

    Compressive Sensing with Low-Power Transfer and Accurate Reconstruction of EEG Signals

    Get PDF
    Tele-monitoring of EEG in WBAN is essential as EEG is the most powerful physiological parameters to diagnose any neurological disorder. Generally, EEG signal needs to record for longer periods which results in a large volume of data leading to huge storage and communication bandwidth requirements in WBAN. Moreover, WBAN sensor nodes are battery operated which consumes lots of energy. The aim of this research is, therefore, low power transmission of EEG signal over WBAN and its accurate reconstruction at the receiver to enable continuous online-monitoring of EEG and real time feedback to the patients from the medical experts. To reduce data rate and consequently reduce power consumption, compressive sensing (CS) may be employed prior to transmission. Nonetheless, for EEG signals, the accuracy of reconstruction of the signal with CS depends on a suitable dictionary in which the signal is sparse. As the EEG signal is not sparse in either time or frequency domain, identifying an appropriate dictionary is paramount. There are a plethora of choices for the dictionary to be used. Wavelet bases are of interest due to the availability of associated systems and methods. However, the attributes of wavelet bases that can lead to good quality of reconstruction are not well understood. For the first time in this study, it is demonstrated that in selecting wavelet dictionaries, the incoherence with the sensing matrix and the number of vanishing moments of the dictionary should be considered at the same time. In this research, a framework is proposed for the selection of an appropriate wavelet dictionary for EEG signal which is used in tandem with sparse binary matrix (SBM) as the sensing matrix and ST-SBL method as the reconstruction algorithm. Beylkin (highly incoherent with SBM and relatively high number of vanishing moments) is identified as the best dictionary to be used amongst the dictionaries are evaluated in this thesis. The power requirements for the proposed framework are also quantified using a power model. The outcomes will assist to realize the computational complexity and online implementation requirements of CS for transmitting EEG in WBAN. The proposed approach facilitates the energy savings budget well into the microwatts range, ensuring a significant savings of battery life and overall system’s power. The study is intended to create a strong base for the use of EEG in the high-accuracy and low-power based biomedical applications in WBAN

    Low Power IoT based Automated Manhole Cover Monitoring System as a Smart City application

    Get PDF
    With the increased population in the big cities, Internet of Things (IoT) devices to be used as automated monitoring systems are required in many of the Smart city’s applications. Monitoring road infrastructure such as a manhole cover (MC) is one of these applications. Automating monitoring manhole cover structure has become more demanding, especially when the number of MC failure increases rapidly: it affects the safety, security and the economy of the society. Only 30% of the current MC monitoring systems are automated with short lifetime in comparison to the lifetime of the MC, without monitoring all the MC issues and without discussing the challenges of the design from IoT device design point of view. Extending the lifetime of a fully automated IoT-based MC monitoring system from circuit design point of view was studied and addressed in this research. The main circuit that consumes more power in the IoT-based MC monitoring system is the analogue to digital converter (ADC) found at the data acquisition module (DAQ). In several applications, the compressive sensing (CS) technique proved its capability to reduce the power consumption for ADC. In this research, CS has been investigated and studied deeply to reach the aim of the research. CS based ADC is named analogue to information converter (AIC). Because the heart of the AIC is the pseudorandom number generator (PRNG), several researchers have used it as a key to secure the data, which makes AIC more suitable for IoT device design. Most of these PRNG designs for AIC are hardware implemented in the digital circuit design. The presence of digital PRNG at the AIC analogue front end requires: a) isolating digital and analogue parts, and b) using two different power supplies and grounds for analogue and digital parts. On the other hand, analogue circuit design becomes more demanding for the sake of the power consumption, especially after merging the analogue circuit design with other fields such as neural networks and neuroscience. This has motivated the researcher to propose two low-power analogue chaotic oscillators to replace digital PRNG using opamp Schmitt Trigger. The proposed systems are based on a coupling oscillator concept. The design of the proposed systems is based on: First, two new modifications for the well-known astable multivibrator using opamp Schmitt trigger. Second, the waveshaping design technique is presented to design analogue chaotic oscillators instead of starting with complex differential equations as it is the case for most of the chaotic oscillator designs. This technique helps to find easy steps and understanding of building analogue chaotic oscillators for electronic circuit designers. The proposed systems used off the shelf components as a proof of concept. The proposed systems were validated based on: a) the range of the temperature found beneath a manhole cover, and b) the signal reconstruction under the presence and the absence of noise. The results show decent performance of the proposed system from the power consumption point of view, as it can exceed the lifetime of similar two opamps based Jerk chaotic oscillators by almost one year for long lifetime applications such as monitoring MC using Li-Ion battery. Furthermore, in comparison to PRNG output sequence generated by a software algorithm used in AIC framework in the presence of the noise, the first proposed system output sequence improved the signal reconstruction by 6.94%, while the second system improved the signal reconstruction by 17.83
    corecore