34,720 research outputs found
Spectral and Energy Efficiency of IRS-Assisted MISO Communication with Hardware Impairments
In this letter, we analyze the spectral and energy efficiency of an intelligent reflecting surface (IRS)-assisted multiple-input single-output (MISO) downlink system with hardware impairments. An extended error vector magnitude (EEVM) model is utilized to characterize the impact of radio-frequency (RF) impairments at the access point (AP) and phase noise is considered at the IRS. We show that the spectral efficiency is limited due to the hardware impairments even when the numbers of AP antennas and IRS elements grow infinitely large, which is in contrast with the conventional case with ideal hardware. Moreover, the performance degradation at high SNR is shown to be mainly affected by the AP hardware impairments rather than by the phase noise at the IRS. We further obtain in closed form the optimal transmit power for energy efficiency maximization. Simulation results are provided to verify the obtained results
Achievable Rate of Rician Large-Scale MIMO Channels with Transceiver Hardware Impairments
Transceiver hardware impairments (e.g., phase noise,
in-phase/quadrature-phase (I/Q) imbalance, amplifier non-linearities, and
quantization errors) have obvious degradation effects on the performance of
wireless communications. While prior works have improved our knowledge on the
influence of hardware impairments of single-user multiple-input multiple-output
(MIMO) systems over Rayleigh fading channels, an analysis encompassing the
Rician fading channel is not yet available. In this paper, we pursue a detailed
analysis of regular and large-scale (LS) MIMO systems over Rician fading
channels by deriving new, closed-form expressions for the achievable rate to
provide several important insights for practical system design. More
specifically, for regular MIMO systems with hardware impairments, there is
always a finite achievable rate ceiling, which is irrespective of the transmit
power and fading conditions. For LS-MIMO systems, it is interesting to find
that the achievable rate loss depends on the Rician -factor, which reveals
that the favorable propagation in LS-MIMO systems can remove the influence of
hardware impairments. However, we show that the non-ideal LS-MIMO system can
still achieve high spectral efficiency due to its huge degrees of freedom.Comment: 7 pages, 1 table, 3 figures, accepted to appear in IEEE Transactions
on Vehicular Technolog
Hardware Impairments Aware Transceiver for Full-Duplex Massive MIMO Relaying
This paper studies the massive MIMO full-duplex relaying (MM-FDR), where
multiple source-destination pairs communicate simultaneously with the help of a
common full-duplex relay equipped with very large antenna arrays. Different
from the traditional MM-FDR protocol, a general model where
sources/destinations are allowed to equip with multiple antennas is considered.
In contrast to the conventional MIMO system, massive MIMO must be built with
low-cost components which are prone to hardware impairments. In this paper, the
effect of hardware impairments is taken into consideration, and is modeled
using transmit/receive distortion noises. We propose a low complexity hardware
impairments aware transceiver scheme (named as HIA scheme) to mitigate the
distortion noises by exploiting the statistical knowledge of channels and
antenna arrays at sources and destinations. A joint degree of freedom and power
optimization algorithm is presented to further optimize the spectral efficiency
of HIA based MM-FDR. The results show that the HIA scheme can mitigate the
"ceiling effect" appears in traditional MM-FDR protocol, if the numbers of
antennas at sources and destinations can scale with that at the relay.Comment: Extended version of 'Hardware Impairments Aware Transceiver for
Full-Duplex Massive MIMO Relaying'(Doi: 10.1109/TSP.2015.2469635
On the MIMO Capacity with Residual Transceiver Hardware Impairments
Radio-frequency (RF) impairments in the transceiver hardware of communication
systems (e.g., phase noise (PN), high power amplifier (HPA) nonlinearities, or
in-phase/quadrature-phase (I/Q) imbalance) can severely degrade the performance
of traditional multiple-input multiple-output (MIMO) systems. Although
calibration algorithms can partially compensate these impairments, the
remaining distortion still has substantial impact. Despite this, most prior
works have not analyzed this type of distortion. In this paper, we investigate
the impact of residual transceiver hardware impairments on the MIMO system
performance. In particular, we consider a transceiver impairment model, which
has been experimentally validated, and derive analytical ergodic capacity
expressions for both exact and high signal-to-noise ratios (SNRs). We
demonstrate that the capacity saturates in the high-SNR regime, thereby
creating a finite capacity ceiling. We also present a linear approximation for
the ergodic capacity in the low-SNR regime, and show that impairments have only
a second-order impact on the capacity. Furthermore, we analyze the effect of
transceiver impairments on large-scale MIMO systems; interestingly, we prove
that if one increases the number of antennas at one side only, the capacity
behaves similar to the finite-dimensional case. On the contrary, if the number
of antennas on both sides increases with a fixed ratio, the capacity ceiling
vanishes; thus, impairments cause only a bounded offset in the capacity
compared to the ideal transceiver hardware case.Comment: Accepted for publication at the IEEE International Conference on
Communications (ICC 2014), 7 pages, 6 figure
Power Switching Protocol for Two-way Relaying Network under Hardware Impairments
In this paper, we analyze the impact of hardware impairments at relay node and source node (i.e. imperfect nodes) on network performance by evaluating outage probability based on the effective signal to noise and distortion ratio (SNDR). Especially, we propose energy harvesting protocol at the relay and source nodes, namely, power switching imperfect relay (PSIR) and power switching imperfect source (PSIS). Aiming to determine the performance of energy constrained network, we first derive closed-form expressions of the outage probability and then the throughput can be maximized in delay-limited transmission mode. The simulation results provide practical insights into the impacts of hardware impairments and power switching factors of the energy harvesting protocol on the performance of energy harvesting enabled two-way relaying network
- …
