3,033 research outputs found

    Pseudorandomness for Approximate Counting and Sampling

    Get PDF
    We study computational procedures that use both randomness and nondeterminism. The goal of this paper is to derandomize such procedures under the weakest possible assumptions. Our main technical contribution allows one to “boost” a given hardness assumption: We show that if there is a problem in EXP that cannot be computed by poly-size nondeterministic circuits then there is one which cannot be computed by poly-size circuits that make non-adaptive NP oracle queries. This in particular shows that the various assumptions used over the last few years by several authors to derandomize Arthur-Merlin games (i.e., show AM = NP) are in fact all equivalent. We also define two new primitives that we regard as the natural pseudorandom objects associated with approximate counting and sampling of NP-witnesses. We use the “boosting” theorem and hashing techniques to construct these primitives using an assumption that is no stronger than that used to derandomize AM. We observe that Cai's proof that S_2^P ⊆ PP⊆(NP) and the learning algorithm of Bshouty et al. can be seen as reductions to sampling that are not probabilistic. As a consequence they can be derandomized under an assumption which is weaker than the assumption that was previously known to suffice

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF

    Near-optimal Bootstrapping of Hitting Sets for Algebraic Models

    Full text link
    The classical lemma of Ore-DeMillo-Lipton-Schwartz-Zippel [Ore22,DL78,Zip79,Sch80] states that any nonzero polynomial f(x1,,xn)f(x_1,\ldots, x_n) of degree at most ss will evaluate to a nonzero value at some point on a grid SnFnS^n \subseteq \mathbb{F}^n with S>s|S| > s. Thus, there is an explicit hitting set for all nn-variate degree ss, size ss algebraic circuits of size (s+1)n(s+1)^n. In this paper, we prove the following results: - Let ϵ>0\epsilon > 0 be a constant. For a sufficiently large constant nn and all s>ns > n, if we have an explicit hitting set of size (s+1)nϵ(s+1)^{n-\epsilon} for the class of nn-variate degree ss polynomials that are computable by algebraic circuits of size ss, then for all ss, we have an explicit hitting set of size sexpexp(O(logs))s^{\exp \circ \exp (O(\log^\ast s))} for ss-variate circuits of degree ss and size ss. That is, if we can obtain a barely non-trivial exponent compared to the trivial (s+1)n(s+1)^{n} sized hitting set even for constant variate circuits, we can get an almost complete derandomization of PIT. - The above result holds when "circuits" are replaced by "formulas" or "algebraic branching programs". This extends a recent surprising result of Agrawal, Ghosh and Saxena [AGS18] who proved the same conclusion for the class of algebraic circuits, if the hypothesis provided a hitting set of size at most (sn0.5δ)(s^{n^{0.5 - \delta}}) (where δ>0\delta>0 is any constant). Hence, our work significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly non-trivial saving over the trivial hitting set, and also presents the first such result for algebraic branching programs and formulas.Comment: The main result has been strengthened significantly, compared to the older version of the paper. Additionally, the stronger theorem now holds even for subclasses of algebraic circuits, such as algebraic formulas and algebraic branching program
    corecore