48 research outputs found

    Hardness of Reconfiguring Robot Swarms with Uniform External Control in Limited Directions

    Get PDF
    Motivated by advances is nanoscale applications and simplistic robot agents, we look at problems based on using a global signal to move all agents when given a limited number of directional signals and immovable geometry. We study a model where unit square particles move within a 2D grid based on uniform external forces. Movement is based on a sequence of uniform commands which cause all particles to move 1 step in a specific direction. The 2D grid board additionally contains \blocked spaces which prevent particles from entry. Within this model, we investigate the complexity of deciding 1) whether a target location on the board can be occupied (by any) particle (occupancy problem), 2) whether a specific particle can be relocated to another specific position in the board (relocation problem), and 3) whether a board configuration can be transformed into another configuration (reconfiguration problem). We prove that while occupancy is solvable in polynomial time, the relocation and reconfiguration problems are both NP-Complete even when restricted to only 2 or 3 movement directions. We further define a hierarchy of board geometries and show that this hardness holds for even very restricted classes of board geometry

    Relocating Units in Robot Swarms with Uniform Control Signals is PSPACE-Complete

    Get PDF
    This paper investigates a restricted version of robot motion planning, in which particles on a board uniformly respond to global signals that cause them to move one unit distance in a particular direction on a 2D grid board with geometric obstacles. We show that the problem of deciding if a particular particle can be relocated to a specified location on the board is PSPACE-complete when only allowing 1x1 particles. This shows a separation between this problem, called the relocation problem, and the occupancy problem in which we ask whether a particular location can be occupied by any particle on the board, which is known to be in P with only 1x1 particles. We then consider both the occupancy and relocation problems for the case of extremely simple rectangular geometry, but slightly more complicated pieces consisting of 1x2 and 2x1 domino particles, and show that in both cases the problems are PSPACE-complete

    Computing Motion Plans for Assembling Particles with Global Control

    Full text link
    We investigate motion planning algorithms for the assembly of shapes in the \emph{tilt model} in which unit-square tiles move in a grid world under the influence of uniform external forces and self-assemble according to certain rules. We provide several heuristics and experimental evaluation of their success rate, solution length, runtime, and memory consumption.Comment: 20 pages, 12 figure

    Particle Computation: Complexity, Algorithms, and Logic

    Full text link
    We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal (such as gravity or a magnetic field). We show that a maze of obstacles to the environment can be used to create complex systems. We provide a wide range of results for a wide range of questions. These can be subdivided into external algorithmic problems, in which particle configurations serve as input for computations that are performed elsewhere, and internal logic problems, in which the particle configurations themselves are used for carrying out computations. For external algorithms, we give both negative and positive results. If we are given a set of stationary obstacles, we prove that it is NP-hard to decide whether a given initial configuration of unit-sized particles can be transformed into a desired target configuration. Moreover, we show that finding a control sequence of minimum length is PSPACE-complete. We also work on the inverse problem, providing constructive algorithms to design workspaces that efficiently implement arbitrary permutations between different configurations. For internal logic, we investigate how arbitrary computations can be implemented. We demonstrate how to encode dual-rail logic to build a universal logic gate that concurrently evaluates and, nand, nor, and or operations. Using many of these gates and appropriate interconnects, we can evaluate any logical expression. However, we establish that simulating the full range of complex interactions present in arbitrary digital circuits encounters a fundamental difficulty: a fan-out gate cannot be generated. We resolve this missing component with the help of 2x1 particles, which can create fan-out gates that produce multiple copies of the inputs. Using these gates we provide rules for replicating arbitrary digital circuits.Comment: 27 pages, 19 figures, full version that combines three previous conference article

    Particle computation: Designing worlds to control robot swarms with only global signals

    Get PDF
    Micro- and nanorobots are often controlled by global input signals, such as an electromagnetic or gravitational field. These fields move each robot maximally until it hits a stationary obstacle or another stationary robot. This paper investigates 2D motion-planning complexity for large swarms of simple mobile robots (such as bacteria, sensors, or smart building material). In previous work we proved it is NP-hard to decide whether a given initial configuration can be transformed into a desired target configuration; in this paper we prove a stronger result: the problem of finding an optimal control sequence is PSPACE-complete. On the positive side, we show we can build useful systems by designing obstacles. We present a reconfigurable hardware platform and demonstrate how to form arbitrary permutations and build a compact absolute encoder. We then take the same platform and use dual-rail logic to build a universal logic gate that concurrently evaluates AND, NAND, NOR and OR operations. Using many of these gates and appropriate interconnects we can evaluate any logical expression.National Science Foundation (U.S.) (CPS-1035716

    Full Tilt: Universal Constructors for General Shapes with Uniform External Forces

    Get PDF
    We investigate the problem of assembling general shapes and patterns in a model in which particles move based on uniform external forces until they encounter an obstacle. In this model, corresponding particles may bond when adjacent with one another. Succinctly, this model considers a 2D grid of “open” and “blocked” spaces, along with a set of slidable polyominoes placed at open locations on the board. The board may be tilted in any of the 4 cardinal directions, causing all slidable polyominoes to move maximally in the specified direction until blocked. By successively applying a sequence of such tilts, along with allowing different polyominoes to stick when adjacent, tilt sequences provide a method to reconfigure an initial board configuration so as to assemble a collection of previous separate polyominoes into a larger shape. While previous work within this model of assembly has focused on designing a specific board configuration for the assembly of a specific given shape, we propose the problem of designing universal configurations that are capable of constructing a large class of shapes and patterns. For these constructions, we present the notions of weak and strong universality which indicate the presence of “excess” polyominoes after the shape is constructed. In particular, for given integers h, w, we show that there exists a weakly universal configuration with O(hw) 1 × 1 slidable particles that can be reconfigured to build any h × w patterned rectangle. We then expand this result to show that there exists a weakly universal configuration that can build any h × w-bounded size connected shape. Following these results, which require an admittedly relaxed assembly definition, we go on to show the existence of a strongly universal configuration (no excess particles) which can assemble any shape within a previously studied “drop” class, while using quadratically less space than previous results. Finally, we include a study of the complexity of deciding if a particle within a configuration may be relocated to another position, and deciding if a given configuration may be transformed into a second given configuration. We show both problems to be PSPACE-complete even when no particles stick to one another and movable particles are restricted to 1 × 1 tiles and a single 2 × 2 polyomino

    Algorithmic Assembly of Nanoscale Structures

    Get PDF
    The development of nanotechnology has become one of the most significant endeavors of our time. A natural objective of this field is discovering how to engineer nanoscale structures. Limitations of current top-down techniques inspire investigation into bottom-up approaches to reach this objective. A fundamental precondition for a bottom-up approach is the ability to control the behavior of nanoscale particles. Many abstract representations have been developed to model systems of particles and to research methods for controlling their behavior. This thesis develops theories on two such approaches for building complex structures: the self-assembly of simple particles, and the use of simple robot swarms. The concepts for these two approaches are straightforward. Self-assembly is the process by which simple particles, following the rules of some behavior-governing system, naturally coalesce into a more complex form. The other method of bottom-up assembly involves controlling nanoscale particles through explicit directions and assembling them into a desired form. Regarding the self-assembly of nanoscale structures, we present two construction methods in a variant of a popular theoretical model known as the 2-Handed Tile Self-Assembly Model. The first technique achieves shape construction at only a constant scale factor, while the second result uses only a constant number of unique particle types. Regarding the use of robot swarms for construction, we first develop a novel technique for reconfiguring a swarm of globally-controlled robots into a desired shape even when the robots can only move maximally in a commanded direction. We then expand on this work by formally defining an entire hierarchy of shapes which can be built in this manner and we provide a technique for doing so

    Engaging Students during Research through the Use of Games

    Get PDF
    Engaging students during a research seminar/meeting can be a difficult challenge, and as as student myself, I can attest to how difficult actively listening to a presentation can be. As such, upon researching more ways to have an audience engaged, one of the most promising concepts is the use of games. Games, in any form, can be very engaging to a person, and even more so if there is active engagement and participation within an audience group. With this concept in mind, I decided to take it upon myself to create a game based around a theoretical computer science model, and see if I can have newcomers learn how the theoretical model works faster than during a normal presentation. I have worked with the concept of games various times before, and as such, I will include that work in this thesis for the sake of theme, and to argue that learning with games tends to be a lot easier than traditional forms of learning
    corecore