16 research outputs found

    Crossing Number is Hard for Kernelization

    Get PDF
    The graph crossing number problem, cr(G)<=k, asks for a drawing of a graph G in the plane with at most k edge crossings. Although this problem is in general notoriously difficult, it is fixed-parameter tractable for the parameter k [Grohe, STOC 2001]. This suggests a closely related question of whether this problem has a polynomial kernel, meaning whether every instance of cr(G)<=k can be in polynomial time reduced to an equivalent instance of size polynomial in k (and independent of |G|). We answer this question in the negative. Along the proof we show that the tile crossing number problem of twisted planar tiles is NP-hard, which has been an open problem for some time, too, and then employ the complexity technique of cross-composition. Our result holds already for the special case of graphs obtained from planar graphs by adding one edge

    An ILP-based Proof System for the Crossing Number Problem

    Get PDF
    Formally, approaches based on mathematical programming are able to find provably optimal solutions. However, the demands on a verifiable formal proof are typically much higher than the guarantees we can sensibly attribute to implementations of mathematical programs. We consider this in the context of the crossing number problem, one of the most prominent problems in topological graph theory. The problem asks for the minimum number of edge crossings in any drawing of a given graph. Graph-theoretic proofs for this problem are known to be notoriously hard to obtain. At the same time, proofs even for very specific graphs are often of interest in crossing number research, as they can, e.g., form the basis for inductive proofs. We propose a system to automatically generate a formal proof based on an ILP computation. Such a proof is (relatively) easily verifiable, and does not require the understanding of any complex ILP codes. As such, we hope our proof system may serve as a showcase for the necessary steps and central design goals of how to establish formal proof systems based on mathematical programming formulations

    Crossing Number for Graphs with Bounded~Pathwidth

    Get PDF
    The crossing number is the smallest number of pairwise edge crossings when drawing a graph into the plane. There are only very few graph classes for which the exact crossing number is known or for which there at least exist constant approximation ratios. Furthermore, up to now, general crossing number computations have never been successfully tackled using bounded width of graph decompositions, like treewidth or pathwidth. In this paper, we for the first time show that crossing number is tractable (even in linear time) for maximal graphs of bounded pathwidth 3. The technique also shows that the crossing number and the rectilinear (a.k.a. straight-line) crossing number are identical for this graph class, and that we require only an O(n)xO(n)-grid to achieve such a drawing. Our techniques can further be extended to devise a 2-approximation for general graphs with pathwidth 3, and a 4w^3-approximation for maximal graphs of pathwidth w. This is a constant approximation for bounded pathwidth graphs

    Deciding parity of graph crossing number

    Get PDF

    Inserting Multiple Edges into a Planar Graph

    Get PDF
    Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees. We give the first exact algorithm for this problem; it requires only O(|V(G)|) time for any constant k

    Complexity of Anchored Crossing Number and Crossing Number of Almost Planar Graphs

    Full text link
    In this paper we deal with the problem of computing the exact crossing number of almost planar graphs and the closely related problem of computing the exact anchored crossing number of a pair of planar graphs. It was shown by [Cabello and Mohar, 2013] that both problems are NP-hard; although they required an unbounded number of high-degree vertices (in the first problem) or an unbounded number of anchors (in the second problem) to prove their result. Somehow surprisingly, only three vertices of degree greater than 3, or only three anchors, are sufficient to maintain hardness of these problems, as we prove here. The new result also improves the previous result on hardness of joint crossing number on surfaces by [Hlin\v{e}n\'y and Salazar, 2015]. Our result is best possible in the anchored case since the anchored crossing number of a pair of planar graphs with two anchors each is trivial, and close to being best possible in the almost planar case since the crossing number is efficiently computable for almost planar graphs of maximum degree 3 [Riskin 1996, Cabello and Mohar 2011]
    corecore