20,661 research outputs found

    On the minimum distance of elliptic curve codes

    Full text link
    Computing the minimum distance of a linear code is one of the fundamental problems in algorithmic coding theory. Vardy [14] showed that it is an \np-hard problem for general linear codes. In practice, one often uses codes with additional mathematical structure, such as AG codes. For AG codes of genus 00 (generalized Reed-Solomon codes), the minimum distance has a simple explicit formula. An interesting result of Cheng [3] says that the minimum distance problem is already \np-hard (under \rp-reduction) for general elliptic curve codes (ECAG codes, or AG codes of genus 11). In this paper, we show that the minimum distance of ECAG codes also has a simple explicit formula if the evaluation set is suitably large (at least 2/32/3 of the group order). Our method is purely combinatorial and based on a new sieving technique from the first two authors [8]. This method also proves a significantly stronger version of the MDS (maximum distance separable) conjecture for ECAG codes.Comment: 13 page

    Algebraic geometric codes

    Get PDF
    The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes

    Construction of Rational Surfaces Yielding Good Codes

    Get PDF
    In the present article, we consider Algebraic Geometry codes on some rational surfaces. The estimate of the minimum distance is translated into a point counting problem on plane curves. This problem is solved by applying the upper bound "\`a la Weil" of Aubry and Perret together with the bound of Homma and Kim for plane curves. The parameters of several codes from rational surfaces are computed. Among them, the codes defined by the evaluation of forms of degree 3 on an elliptic quadric are studied. As far as we know, such codes have never been treated before. Two other rational surfaces are studied and very good codes are found on them. In particular, a [57,12,34] code over F7\mathbf{F}_7 and a [91,18,53] code over F9\mathbf{F}_9 are discovered, these codes beat the best known codes up to now.Comment: 20 pages, 7 figure
    • …
    corecore