1,830 research outputs found

    Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    Get PDF
    International audienceA new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and stiffness ratio are dissociated from the simulation time step. This last point is crucial to keep stable haptic feedback. This global approach has been packaged, implemented, and tested. Stable and realistic 6D haptic feedback is demonstrated through a clipping task experiment

    Unified processing of constraints for interactive simulation

    Get PDF
    International audienceThis paper introduces a generic way of dealing with a set of different constraints (bilateral, unilateral, dry friction) in the context of interactive simulation. We show that all the mentioned constraints can be handled within a unified framework: we define the notion of generalized constraints, which can be derived into most classical constraints types. The solving method is based on an implicit treatment of constraints that provides good stability for interactive applications using deformable models and rigid bodies. Each constraint law is expressed in constraint subspace, making constraint evaluation much easier. A global solution is calculated using an iterative process that takes into account the mechanical coupling between the constraints. Various examples, from basic to more complex, show the practical advantage of using generalized constraints, as a way of creating heterogeneously constrained systems, as well as the scalability of the proposed method

    Haptic Rendering of Hyperelastic Models with Friction

    Get PDF
    International audience— This paper presents an original method for inter-actions' haptic rendering when treating hyperelastic materials. Such simulations are known to be difficult due to the non-linear behavior of hyperelastic bodies; furthermore, haptic constraints enjoin contact forces to be refreshed at least at 1000 updates per second. To enforce the stability of simulations of generic objects of any range of stiffness, this method relies on implicit time integration. Soft tissues dynamics is simulated in real time (20 to 100 Hz) using the Multiplicative Jacobian Energy Decomposition (MJED) method. An asynchronous preconditioner, updated at low rates (1 to 10 Hz), is used to obtain a close approximation of the mechanical coupling of interactions. Finally, the contact problem is linearized and, using a specific-loop, it is updated at typical haptic rates (around 1000 Hz) allowing this way new simulations of prompt stiff-contacts and providing a continuous haptic feedback as well

    Unified processing of constraints for interactive simulation

    Get PDF
    International audienceThis paper introduces a generic way of dealing with a set of different constraints (bilateral, unilateral, dry friction) in the context of interactive simulation. We show that all the mentioned constraints can be handled within a unified framework: we define the notion of generalized constraints, which can be derived into most classical constraints types. The solving method is based on an implicit treatment of constraints that provides good stability for interactive applications using deformable models and rigid bodies. Each constraint law is expressed in constraint subspace, making constraint evaluation much easier. A global solution is calculated using an iterative process that takes into account the mechanical coupling between the constraints. Various examples, from basic to more complex, show the practical advantage of using generalized constraints, as a way of creating heterogeneously constrained systems, as well as the scalability of the proposed method
    • 

    corecore