3 research outputs found

    Force Rendering and Its Evaluation of a Friction-based Walking Sensation Display for a Seated User

    Full text link
    Most existing locomotion devices that represent the sensation of walking target a user who is actually performing a walking motion. Here, we attempted to represent the walking sensation, especially a kinesthetic sensation and advancing feeling (the sense of moving forward) while the user remains seated. To represent the walking sensation using a relatively simple device, we focused on the force rendering and its evaluation of the longitudinal friction force applied on the sole during walking. Based on the measurement of the friction force applied on the sole during actual walking, we developed a novel friction force display that can present the friction force without the influence of body weight. Using performance evaluation testing, we found that the proposed method can stably and rapidly display friction force. Also, we developed a virtual reality (VR) walk-through system that is able to present the friction force through the proposed device according to the avatar's walking motion in a virtual world. By evaluating the realism, we found that the proposed device can represent a more realistic advancing feeling than vibration feedback

    Haptic ankle platform for interactive walking in virtual reality.

    Get PDF
    This paper presents an impedance type ankle haptic interface for providing users with an immersive navigation experience in virtual reality (VR). The ankle platform actuated by an electric motor with feedback control enables the use of foot-tapping gestures to create a walking experience similar to a real one and to haptically render different types of walking terrains. Experimental studies demonstrated that the interface can be easily used to generate virtual walking and it is capable to render terrains such as hard and soft surfaces, and multi-layer complex dynamic terrains. The designed system is a seated-type VR locomotion interface, therefore allowing its user to maintain a stable seated posture to comfortably navigate a virtual scene

    Ankle-Actuated Human-Machine Interface for Walking in Virtual Reality

    Get PDF
    This thesis work presents design, implementation and experimental study of an impedance type ankle haptic interface for providing users with the immersive navigation experience in virtual reality (VR). The ankle platform enables the use of foot-tapping gestures to reproduce realistic walking experience in VR and to haptically render different types of walking terrains. The system is designed to be used by seated users allowing more comfort, causing less fatigue and motion sickness. The custom-designed ankle interface is composed of a single actuator-sensors system making it a cost-efficient solution for VR applications. The designed interface consists of a single degree of freedom actuated platform which can rotate around the ankle joint of the user. The platform is impedance controlled around the horizontal position by an electric motor and capstan transmission system. to perform walking in a virtual scene, a seated user is expected to perform walking gestures in form of ankle plantar-flexion and dorsiflexion movements causing the platform to tilt forward and backward. We present three algorithms for simulating the immersive locomotion of a VR avatar using the platform movement information. We also designed multiple impedance controllers to render haptic feedback for different virtual terrains during walking. We carried out experiments to understand how quickly users adapt to the interface, how well they can control their locomotion speed in VR, and how well they can distinguish different types of terrains presented through haptic feedback. We implemented qualitative questionnaires on the usability of the device and the task load of the experimental procedures. The experimental studies demonstrated that the interface can be easily used to navigate in VR and it is capable of rendering dynamic multi-layer complex terrains containing structures with different stiffness and brittleness properties
    corecore