Ankle-Actuated Human-Machine Interface for Walking in Virtual Reality

Abstract

This thesis work presents design, implementation and experimental study of an impedance type ankle haptic interface for providing users with the immersive navigation experience in virtual reality (VR). The ankle platform enables the use of foot-tapping gestures to reproduce realistic walking experience in VR and to haptically render different types of walking terrains. The system is designed to be used by seated users allowing more comfort, causing less fatigue and motion sickness. The custom-designed ankle interface is composed of a single actuator-sensors system making it a cost-efficient solution for VR applications. The designed interface consists of a single degree of freedom actuated platform which can rotate around the ankle joint of the user. The platform is impedance controlled around the horizontal position by an electric motor and capstan transmission system. to perform walking in a virtual scene, a seated user is expected to perform walking gestures in form of ankle plantar-flexion and dorsiflexion movements causing the platform to tilt forward and backward. We present three algorithms for simulating the immersive locomotion of a VR avatar using the platform movement information. We also designed multiple impedance controllers to render haptic feedback for different virtual terrains during walking. We carried out experiments to understand how quickly users adapt to the interface, how well they can control their locomotion speed in VR, and how well they can distinguish different types of terrains presented through haptic feedback. We implemented qualitative questionnaires on the usability of the device and the task load of the experimental procedures. The experimental studies demonstrated that the interface can be easily used to navigate in VR and it is capable of rendering dynamic multi-layer complex terrains containing structures with different stiffness and brittleness properties

    Similar works