4,627 research outputs found

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    Feeling what you hear: tactile feedback for navigation of audio graphs

    Get PDF
    Access to digitally stored numerical data is currently very limited for sight impaired people. Graphs and visualizations are often used to analyze relationships between numerical data, but the current methods of accessing them are highly visually mediated. Representing data using audio feedback is a common method of making data more accessible, but methods of navigating and accessing the data are often serial in nature and laborious. Tactile or haptic displays could be used to provide additional feedback to support a point-and-click type interaction for the visually impaired. A requirements capture conducted with sight impaired computer users produced a review of current accessibility technologies, and guidelines were extracted for using tactile feedback to aid navigation. The results of a qualitative evaluation with a prototype interface are also presented. Providing an absolute position input device and tactile feedback allowed the users to explore the graph using tactile and proprioceptive cues in a manner analogous to point-and-click techniques

    Active PinScreen: Exploring Spatio-Temporal Tactile Feedbackfor Multi-Finger Interaction

    Get PDF
    Multiple fingers are often used for efficient interaction with handheld computing devices. Currently, any tactile feedback provided is felt on the finger pad or the palm with coarse granularity. In contrast, we present a new tactile feedback technique, Active PinScreen, that applies localised stimuli on multiple fingers with fine spatial and temporal resolution. The tactile screen uses an array of solenoid-actuated magnetic pins with millimetre scale form-factor which could be deployed for back-of-device handheld use without instrumenting the user. As well as presenting a detailed description of the prototype, we provide the potential design configurations and the applications of the Active PinScreen and evaluate the human factors of tactile interaction with multiple fingers in a controlled user evaluation. The results of our study show a high recognition rate for directional and patterned stimulation across different grip orientations as well as within- and between- fingers. We end the paper with a discussion of our main findings, limitations in the current design and directions for future work

    A sense of physical books in our digital society

    Get PDF

    Augmenting the Spatial Perception Capabilities of Users Who Are Blind

    Get PDF
    People who are blind face a series of challenges and limitations resulting from their lack of being able to see, forcing them to either seek the assistance of a sighted individual or work around the challenge by way of a inefficient adaptation (e.g. following the walls in a room in order to reach a door rather than walking in a straight line to the door). These challenges are directly related to blind users' lack of the spatial perception capabilities normally provided by the human vision system. In order to overcome these spatial perception related challenges, modern technologies can be used to convey spatial perception data through sensory substitution interfaces. This work is the culmination of several projects which address varying spatial perception problems for blind users. First we consider the development of non-visual natural user interfaces for interacting with large displays. This work explores the haptic interaction space in order to find useful and efficient haptic encodings for the spatial layout of items on large displays. Multiple interaction techniques are presented which build on prior research (Folmer et al. 2012), and the efficiency and usability of the most efficient of these encodings is evaluated with blind children. Next we evaluate the use of wearable technology in aiding navigation of blind individuals through large open spaces lacking tactile landmarks used during traditional white cane navigation. We explore the design of a computer vision application with an unobtrusive aural interface to minimize veering of the user while crossing a large open space. Together, these projects represent an exploration into the use of modern technology in augmenting the spatial perception capabilities of blind users

    Designing Tactile Interfaces for Abstract Interpersonal Communication, Pedestrian Navigation and Motorcyclists Navigation

    Get PDF
    The tactile medium of communication with users is appropriate for displaying information in situations where auditory and visual mediums are saturated. There are situations where a subject's ability to receive information through either of these channels is severely restricted by the environment they are in or through any physical impairments that the subject may have. In this project, we have focused on two groups of users who need sustained visual and auditory focus in their task: Soldiers on the battle field and motorcyclists. Soldiers on the battle field use their visual and auditory capabilities to maintain awareness of their environment to guard themselves from enemy assault. One of the major challenges to coordination in a hazardous environment is maintaining communication between team members while mitigating cognitive load. Compromise in communication between team members may result in mistakes that can adversely affect the outcome of a mission. We have built two vibrotactile displays, Tactor I and Tactor II, each with nine actuators arranged in a three-by-three matrix with differing contact areas that can represent a total of 511 shapes. We used two dimensions of tactile medium, shapes and waveforms, to represent verb phrases and evaluated ability of users to perceive verb phrases the tactile code. We evaluated the effectiveness of communicating verb phrases while the users were performing two tasks simultaneously. The results showed that performing additional visual task did not affect the accuracy or the time taken to perceive tactile codes. Another challenge in coordinating Soldiers on a battle field is navigating them to respective assembly areas. We have developed HaptiGo, a lightweight haptic vest that provides pedestrians both navigational intelligence and obstacle detection capabilities. HaptiGo consists of optimally-placed vibro-tactile sensors that utilize natural and small form factor interaction cues, thus emulating the sensation of being passively guided towards the intended direction. We evaluated HaptiGo and found that it was able to successfully navigate users with timely alerts of incoming obstacles without increasing cognitive load, thereby increasing their environmental awareness. Additionally, we show that users are able to respond to directional information without training. The needs of motorcyclists are di erent from those of Soldiers. Motorcyclists' need to maintain visual and auditory situational awareness at all times is crucial since they are highly exposed on the road. Route guidance systems, such as the Garmin, have been well tested on automobilists, but remain much less safe for use by motorcyclists. Audio/visual routing systems decrease motorcyclists' situational awareness and vehicle control, and thus increase the chances of an accident. To enable motorcyclists to take advantage of route guidance while maintaining situational awareness, we created HaptiMoto, a wearable haptic route guidance system. HaptiMoto uses tactile signals to encode the distance and direction of approaching turns, thus avoiding interference with audio/visual awareness. Evaluations show that HaptiMoto is intuitive for motorcyclists, and a safer alternative to existing solutions
    • …
    corecore