623 research outputs found

    Mechanical analysis of end-to-end silk-sutured anastomosis for robot-assisted surgery

    Full text link
    Background Robot-assisted anastomosis holds great promise for the future. To secure surgery quality, some key process factors, such as the force arrangement of sutures, should be provided because of the lack of haptic feedback in robotics systems Methods A model of anastomosis is presented to establish the mechanical relationship between vessel and sutures. Stress distribution of the vessel loaded by the suture was then achieved through finite-element simulations, based on the material property test results. Further, experiments were performed to validate the reliability of the FEM simulation of the anastomosis process. Results To avoid blood osmosis, the allowable lower limit of the suture tension was 0.05 N. To keep the tissue free from injury, the allowable upper limit of tension on the suture was 0.4 N. Conclusions The study provided meaningful results for directing the robot-assisted anastomosis procedure and design of the surgical tools. Copyright © 2009 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64523/1/276_ftp.pd

    Investigation of the use of meshfree methods for haptic thermal management of design and simulation of MEMS

    Get PDF
    This thesis presents a novel approach of using haptic sensing technology combined with virtual environment (VE) for the thermal management of Micro-Electro-Mechanical-Systems (MEMS) design. The goal is to reduce the development cycle by avoiding the costly iterative prototyping procedure. In this regard, we use haptic feedback with virtua lprototyping along with an immersing environment. We also aim to improve the productivity and capability of the designer to better grasp the phenomena operating at the micro-scale level, as well as to augment computational steering through haptic channels. To validate the concept of haptic thermal management, we have implemented a demonstrator with a user friendly interface which allows to intuitively "feel" the temperature field through our concept of haptic texturing. The temperature field in a simple MEMS component is modeled using finite element methods (FEM) or finite difference method (FDM) and the user is able to feel thermal expansion using a combination of different haptic feedback. In haptic application, the force rendering loop needs to be updated at a frequency of 1Khz in order to maintain continuity in the user perception. When using FEM or FDM for our three-dimensional model, the computational cost increases rapidly as the mesh size is reduced to ensure accuracy. Hence, it constrains the complexity of the physical model to approximate temperature or stress field solution. It would also be difficult to generate or refine the mesh in real time for CAD process. In order to circumvent the limitations due to the use of conventional mesh-based techniques and to avoid the bothersome task of generating and refining the mesh, we investigate the potential of meshfree methods in the context of our haptic application. We review and compare the different meshfree formulations against FEM mesh based technique. We have implemented the different methods for benchmarking thermal conduction and elastic problems. The main work of this thesis is to determine the relevance of the meshfree option in terms of flexibility of design and computational charge for haptic physical model

    Soft volume simulation using a deformable surface model

    Get PDF
    The aim of the research is to contribute to the modelling of deformable objects, such as soft tissues in medical simulation. Interactive simulation for medical training is a concept undergoing rapid growth as the underlying technologies support the increasingly more realstic and functional training environments. The prominent issues in the deployment of such environments centre on a fine balance between the accuracy of the deformable model and real-time interactivity. Acknowledging the importance of interacting with non-rigid materials such as the palpation of a breast for breast assessment, this thesis has explored the physics-based modelling techniques for both volume and surface approach. This thesis identified that the surface approach based on the mass spring system (MSS) has the benefits of rapid prototyping, reduced mesh complexity, computational efficiency and the support for large material deformation compared to the continuum approach. However, accuracy relative to real material properties is often over looked in the configuration of the resulting model. This thesis has investigated the potential and the feasibility of surface modelling for simulating soft objects regardless of the design of the mesh topology and the non-existence of internal volume discretisation. The assumptions of the material parameters such as elasticity, homogeneity and incompressibility allow a reduced set of material values to be implemented in order to establish the association with the surface configuration. A framework for a deformable surface model was generated in accordance with the issues of the estimation of properties and volume behaviour corresponding to the material parameters. The novel extension to the surface MSS enables the tensile properties of the material to be integrated into an enhanced configuration despite its lack of volume information. The benefits of the reduced complexity of a surface model are now correlated with the improved accuracy in the estimation of properties and volume behaviour. Despite the irregularity of the underlying mesh topology and the absence of volume, the model reflected the original material values and preserved volume with minimal deviations. Global deformation effect which is essential to emulate the run time behaviour of a real soft material upon interaction, such as the palpation of a generic breast, was also demonstrated, thus indicating the potential of this novel technique in the application of soft tissue simulation

    Meshless Mechanics and Point-Based Visualization Methods for Surgical Simulations

    Get PDF
    Computer-based modeling and simulation practices have become an integral part of the medical education field. For surgical simulation applications, realistic constitutive modeling of soft tissue is considered to be one of the most challenging aspects of the problem, because biomechanical soft-tissue models need to reflect the correct elastic response, have to be efficient in order to run at interactive simulation rates, and be able to support operations such as cuts and sutures. Mesh-based solutions, where the connections between the individual degrees of freedom (DoF) are defined explicitly, have been the traditional choice to approach these problems. However, when the problem under investigation contains a discontinuity that disrupts the connectivity between the DoFs, the underlying mesh structure has to be reconfigured in order to handle the newly introduced discontinuity correctly. This reconfiguration for mesh-based techniques is typically called dynamic remeshing, and most of the time it causes the performance bottleneck in the simulation. In this dissertation, the efficiency of point-based meshless methods is investigated for both constitutive modeling of elastic soft tissues and visualization of simulation objects, where arbitrary discontinuities/cuts are applied to the objects in the context of surgical simulation. The point-based deformable object modeling problem is examined in three functional aspects: modeling continuous elastic deformations with, handling discontinuities in, and visualizing a point-based object. Algorithmic and implementation details of the presented techniques are discussed in the dissertation. The presented point-based techniques are implemented as separate components and integrated into the open-source software framework SOFA. The presented meshless continuum mechanics model of elastic tissue were verified by comparing it to the Hertzian non-adhesive frictionless contact theory. Virtual experiments were setup with a point-based deformable block and a rigid indenter, and force-displacement curves obtained from the virtual experiments were compared to the theoretical solutions. The meshless mechanics model of soft tissue and the integrated novel discontinuity treatment technique discussed in this dissertation allows handling cuts of arbitrary shape. The implemented enrichment technique not only modifies the internal mechanics of the soft tissue model, but also updates the point-based visual representation in an efficient way preventing the use of costly dynamic remeshing operations

    Computational Analysis of Surgical Tool-Brain Tissue Interaction

    Get PDF
    This paper presents new surgical tool-brain tissue interactions models in three directional format considering the linear elastic, hyperelastic and viscoelastic properties of a brain tissue which are characterized by conducting stress-strain simulation on brain model. Brain tissues properties like a Neo-Hookean, Mooney-Rivlin Model and Prony Series are considered. Effects of adopting non-linear properties are discussed. After optimizing models in COMSOL Muiltiphysics 4.0, the models show that the brain tissues contain non-linear characteristic and the coefficients of the models are available to Open Inventor in order to initiate a visio-haptic simulation which will be used for doctors and surgical operation manipulators

    Real-Time Numerical Simulation for Accurate Soft Tissues Modeling during Haptic Interaction

    Get PDF
    The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials
    corecore