1,171 research outputs found

    Applying Data Augmentation to Handwritten Arabic Numeral Recognition Using Deep Learning Neural Networks

    Full text link
    Handwritten character recognition has been the center of research and a benchmark problem in the sector of pattern recognition and artificial intelligence, and it continues to be a challenging research topic. Due to its enormous application many works have been done in this field focusing on different languages. Arabic, being a diversified language has a huge scope of research with potential challenges. A convolutional neural network model for recognizing handwritten numerals in Arabic language is proposed in this paper, where the dataset is subject to various augmentation in order to add robustness needed for deep learning approach. The proposed method is empowered by the presence of dropout regularization to do away with the problem of data overfitting. Moreover, suitable change is introduced in activation function to overcome the problem of vanishing gradient. With these modifications, the proposed system achieves an accuracy of 99.4\% which performs better than every previous work on the dataset.Comment: 5 pages, 6 figures, 3 table

    Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine

    Get PDF
    Activity-Based Computing aims to capture the state of the user and its environment by exploiting heterogeneous sensors in order to provide adaptation to exogenous computing resources. When these sensors are attached to the subject’s body, they permit continuous monitoring of numerous physiological signals. This has appealing use in healthcare applications, e.g. the exploitation of Ambient Intelligence (AmI) in daily activity monitoring for elderly people. In this paper, we present a system for human physical Activity Recognition (AR) using smartphone inertial sensors. As these mobile phones are limited in terms of energy and computing power, we propose a novel hardware-friendly approach for multiclass classification. This method adapts the standard Support Vector Machine (SVM) and exploits fixed-point arithmetic for computational cost reduction. A comparison with the traditional SVM shows a significant improvement in terms of computational costs while maintaining similar accuracy, which can contribute to develop more sustainable systems for AmI.Peer ReviewedPostprint (author's final draft

    Task-Driven Dictionary Learning

    Get PDF
    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.Comment: final draft post-refereein
    • …
    corecore