391 research outputs found

    A dissipative time reversal technique for photo-acoustic tomography in a cavity

    Full text link
    We consider the inverse source problem arising in thermo- and photo-acoustic tomography. It consists in reconstructing the initial pressure from the boundary measurements of the acoustic wave. Our goal is to extend versatile time reversal techniques to the case of perfectly reflecting boundary of the domain. Standard time reversal works only if the solution of the direct problem decays in time, which does not happen in the setup we consider. We thus propose a novel time reversal technique with a non-standard boundary condition. The error induced by this time reversal technique satisfies the wave equation with a dissipative boundary condition and, therefore, decays in time. For larger measurement times, this method yields a close approximation; for smaller times, the first approximation can be iteratively refined, resulting in a convergent Neumann series for the approximation

    Disparity and Optical Flow Partitioning Using Extended Potts Priors

    Full text link
    This paper addresses the problems of disparity and optical flow partitioning based on the brightness invariance assumption. We investigate new variational approaches to these problems with Potts priors and possibly box constraints. For the optical flow partitioning, our model includes vector-valued data and an adapted Potts regularizer. Using the notation of asymptotically level stable functions we prove the existence of global minimizers of our functionals. We propose a modified alternating direction method of minimizers. This iterative algorithm requires the computation of global minimizers of classical univariate Potts problems which can be done efficiently by dynamic programming. We prove that the algorithm converges both for the constrained and unconstrained problems. Numerical examples demonstrate the very good performance of our partitioning method

    Reconstructions for some coupled-physics inverse problems

    Get PDF
    This letter announces and summarizes results obtained in arXiv:1111.5051 and considers several natural extensions. The aforementioned paper proposes a procedure to reconstruct coefficients in a second-order, scalar, elliptic equation from knowledge of a sufficiently large number of its solutions. We present this derivation and extend it to show which parameters may or may not be reconstructed for several hybrid (also called coupled physics) imaging modalities including photo-acoustic tomography, thermo-acoustic tomography, transient elastography, and magnetic resonance elastography. Stability estimates are also proposed.Comment: 5 pages, announcement and extension of results obtained in arXiv:1111.505

    On sparsity averaging

    Get PDF
    Recent developments in Carrillo et al. (2012) and Carrillo et al. (2013) introduced a novel regularization method for compressive imaging in the context of compressed sensing with coherent redundant dictionaries. The approach relies on the observation that natural images exhibit strong average sparsity over multiple coherent frames. The associated reconstruction algorithm, based on an analysis prior and a reweighted â„“1\ell_1 scheme, is dubbed Sparsity Averaging Reweighted Analysis (SARA). We review these advances and extend associated simulations establishing the superiority of SARA to regularization methods based on sparsity in a single frame, for a generic spread spectrum acquisition and for a Fourier acquisition of particular interest in radio astronomy.Comment: 4 pages, 3 figures, Proceedings of 10th International Conference on Sampling Theory and Applications (SampTA), Code available at https://github.com/basp-group/sopt, Full journal letter available at http://arxiv.org/abs/arXiv:1208.233
    • …
    corecore