236,269 research outputs found
Stability of Ca-montmorillonite hydrates: A computer simulation study
Classic simulations are used to study interlayer structure, swelling curves,
and stability of Ca-montmorillonite hydrates. For this purpose, NPzzT$ and
MuPzzT ensembles are sampled for ground level and given burial conditions. For
ground level conditions, a double layer hydrate having 15.0 A of basal spacing
is the predominant state for relative vapor pressures (p/po) ranging in
0.6-1.0. A triple hydrate counting on 17.9 A of interlaminar distance was also
found stable for p/po=1.0. For low vapor pressures, the system may produce a
less hydrated but still double layer state with 13.5 A or even a single layer
hydrate with 12.2 A of interlaminar distance. This depends on the established
initial conditions. On the other hand, the effect of burial conditions is two
sided. It was found that it enhances dehydration for all vapor pressures except
for saturation, where swelling is promoted.Comment: 8 pages, 9 figure
Swelling of acetylated wood in organic liquids
To investigate the affinity of acetylated wood for organic liquids, Yezo
spruce wood specimens were acetylated with acetic anhydride, and their swelling
in various liquids were compared to those of untreated specimens. The
acetylated wood was rapidly and remarkably swollen in aprotic organic liquids
such as benzene and toluene in which the untreated wood was swollen only
slightly and/or very slowly. On the other hand, the swelling of wood in water,
ethylene glycol and alcohols remained unchanged or decreased by the
acetylation. Consequently the maximum volume of wood swollen in organic liquids
was always larger than that in water. The effect of acetylation on the maximum
swollen volume of wood was greater in liquids having smaller solubility
parameters. The easier penetration of aprotic organic liquids into the
acetylated wood was considered to be due to the scission of hydrogen bonds
among the amorphous wood constituents by the substitution of hydroxyl groups
with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society
Thermo-mechanical behaviour of a compacted swelling clay
Compacted unsaturated swelling clay is often considered as a possible buffer
material for deep nuclear waste disposal. An isotropic cell permitting
simultaneous control of suction, temperature and pressure was used to study the
thermo-mechanical behaviour of this clay. Tests were performed at total
suctions ranging from 9 to 110 MPa, temperature from 25 to 80 degrees C,
isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant
suction and pressure induces either swelling or contraction. The results from
compression tests at constant suction and temperature evidenced that at lower
suction, the yield pressure was lower, the elastic compressibility parameter
and the plastic compressibility parameter were higher. On the other hand, at a
similar suction, the yield pressure was slightly influenced by the temperature;
and the compressibility parameters were insensitive to temperature changes. The
thermal hardening phenomenon was equally evidenced by following a
thermo-mechanical path of loading-heating-cooling-reloading
Computational modeling of In vitro swelling of mitochondria: A biophysical approach
Swelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.National Institute of General Medical Sciences of the National Institutes of Health [SC1GM128210]; Puerto Rico Institute for Functional Nanomaterials (National Science Foundation Grant) [1002410]; National Aeronautics and Space Administration (NASA) Puerto Rico Established Program to Stimulate Competitive Research (EPSCoR) [NNX15AK43A
A Giant Lipoma In The Hand - Report Of A Rare Case
A 38 years old male patient presented with a large painless swelling in the right palm with ultrasound examination suggestive of fatty nature of the swelling MRI showing a well-circumscribed soft tissue swelling in the deep palmar space. The giant tumor of 6.5 X 4 cm was excised and the patient was symptom free two years following the surgery
Cytotoxicity of the Bacillus thuringiensis Crystal Protein against Mammalian Cells
The crystal proteins produced by Bacillus thuringiensis subsp, israelensis (Bti) and subsp. coreanensis A1519 strain were examined for the cytotoxicity against MOLT-4 and HeLa cells by MTT assay and LDH assay, The A1519 crystal proteins processed by proteinase K exhibited the specific cell-killing activity toward MOLT-4 with little damage to the cell membrane, On the other hand, the Bti crystal proteins processed by proteinase K caused the substantial damage to the cell membrane of both MOLT-4 and HeLa, leading to the cell lysis. The non-digested crystal proteins of both strains exhibited no cytotoxicity, These data suggested that while the Bti crystal proteins caused the colloid-osmotic swelling and cell lysis of MOLT-4 and HeLa, the proteinase K-digested A1519 crystal proteins induced the specific cell death of MOLT-4 through a mechanism other than that of Bti
Reviewing the effects of food provisioning on wildlife immunity
While urban expansion increasingly encroaches on natural habitats, many wildlife species capitalize on anthropogenic food resources, which have the potential to both positively and negatively influence their responses to infection. Here we examine how food availability and key nutrients have been reported to shape innate and adaptive immunity in wildlife by drawing from field-based studies, as well as captive and food restriction studies with wildlife species. Examples of food provisioning and key nutrients enhancing immune function were seen across the three study type distinctions, as were cases of trace metals and pharmaceuticals impairing the immunity of wildlife species. More generally, food provisioning in field studies tended to increase innate and adaptive responses to certain immune challenges, whereas patterns were less clear in captive studies. Mild food restriction often enhanced, whereas severe food restriction frequently impaired immunity. However, to enable stronger conclusions we stress a need for further research, especially field studies, and highlight the importance of integrating nutritional manipulation, immune challenge, and functional outcomes. Despite current gaps in research on this topic, modern high throughput molecular approaches are increasingly feasible for wildlife studies and offer great opportunities to better understand human influences on wildlife health.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'
Computational modelling of void growth in swelled hydrogels
The nature and the large notable distinguishing features of polymeric gels explain their pervasive use as biomaterials in both regenerative medicine and tissue engineering. With regard to their biocompatibility, their ability to withstand large deformation and their significant capacity of solvent absorption, these biomaterials are often selected owing to their versatile mechanical properties and especially the closeness to soft biological tissues, amongst others. A finite-strain theory for the study of the overall behaviour of a porous polymeric gel where microvoids are present is presented. The swollen polymeric gel is modeled as a two-component body composed of two incompressible components, namely, an elastic porous polymer imbibed with a solvant. The chemical equilibrium is assumed to be preponderate at the interface between the porous polymer and the environment where the chemical potential of the solvent is fixed. The initially dry porous polymer undergoes large deformation induced by absorption of a solvent from the environment and mechanical loading. In this paper an attempt is made towards obtaining an estimation of the macroscopic responses of the swollen porous polymer to prescribed proportional loadings. To this end, a two-level representation of the material at hand for which the Representative Volume Element (RVE) imbibed with a solvent is a simple axisymmetric cylinder composed of a homogeneous matrix surrounding a spherical void, is considered. The computational study addresses the situation where the RVE is subjected to prescribed axial and lateral overall stresses under conditions of constant overall stress triaxiality. For fixed values of the Flory-Huggins parameter and the nominal concentration of the solvent, the overall stress-strain behaviour of the RVE model, the influence of the initial porosity, and the prescribed stress triaxiality ratio have been outlined
Development of Chitosan/Gelatin/Keratin Composite Containing Hydrocortisone Sodium Succinate as a Buccal Mucoadhesive Patch to Treat Desquamative Gingivitis
The aim of this research was to develop chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis, which was fabricated through an environmental friendly process. Mucoadhesive films increase the advantage of higher efficiency and drug localization in the affected region. In this research, mucoadhesive films, for the release of hydrocortisone sodium succinate, were prepared using different ratios of chitosan, gelatin and keratin. In the first step, chitosan and gelatin proportions were optimized after evaluating the mechanical properties, swelling capacity, water uptake, stability, and biodegradation of the films. Then, keratin was added at different percentages to the optimum composite of chitosan and gelatin together with the drug. The results of surface pH showed that none of the samples were harmful to the buccal cavity. FTIR analysis confirmed the influence of keratin on the structure of the composite. The presence of a higher amount of keratin in the composite films resulted in high mechanical, mucoadhesive properties and stability, low water uptake and biodegradation in phosphate buffer saline (pH = 7.4) containing 104 U/ml lysozyme. The release profile of the films ascertained that keratin is a rate controller in the release of the hydrocortisone sodium succinate. Finally, chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate can be employed in dental applications
- …
