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Abstract. The nature and the large notable distinguishing features of polymeric gels
explain their pervasive use as biomaterials in both regenerative medicine and tissue
engineering. With regard to their biocompatibility, their ability to withstand large
deformation and their significant capacity of solvent absorption, these biomaterials
are often selected owing to their versatile mechanical properties and especially the
closeness to soft biological tissues, amongst others. A finite-strain theory for the study
of the overall behaviour of a porous polymeric gel where microvoids are present is
presented. The swollen polymeric gel is modeled as a two-component body composed
of two incompressible components, namely, an elastic porous polymer imbibed with
a solvant. The chemical equilibrium is assumed to be preponderate at the interface
between the porous polymer and the environment where the chemical potential of
the solvent is fixed. The initially dry porous polymer undergoes large deformation
induced by absorption of a solvent from the environment and mechanical loading. In
this paper an attempt is made towards obtaining an estimation of the macroscopic
responses of the swollen porous polymer to prescribed proportional loadings. To this
end, a two-level representation of the material at hand for which the Representative
Volume Element (RVE) imbibed with a solvent is a simple axisymmetric cylinder
composed of a homogeneous matrix surrounding a spherical void, is considered. The
computational study addresses the situation where the RVE is subjected to prescribed
axial and lateral overall stresses under conditions of constant overall stress triaxiality.
For fixed values of the Flory-Huggins parameter and the nominal concentration of
the solvent, the overall stress-strain behaviour of the RVE model, the influence of the
initial porosity, and the prescribed stress triaxiality ratio have been outlined.
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1 INTRODUCTION

Hydrogels are pervasive in biology and have been turned out to be nearly optimal
for interfacing with dynamic systems. By way of illustration, they are used as bioma-
terials in order to enhance stem cell transplantation by addressing, in particular, the
mechanical aspects associated with each stage of the transplantation process [1, 17].
The characteristic soft ability of these polymeric biomaterials makes them strongly
resembling the extracellular matrix (ECM) which encapsulates cells in their native en-
vironment. Regarding tissue engineering, scaffolds made of hydrogels, just like ECM,
act as a structural support and are able to accommodate biomechanical signals to con-
trol cell function and eventually their fate [13]. Nowadays, it is trite to claim that stem
cells are known to respond to mechanical cues in their microenvironment by changing
their morphology, dynamics, proliferation rate, migration speed, and differentiation
potential [7, 27]. The physical process of mechanosensitivity is realized through the
contact and adhesion between cells and their microenvironment.

Hydrogels, a cross-linked polymers immersed in water, are an interesting class of
materials that are able to undergo significantly large deformation which can also be
triggered by external stimuli through appropriate change of constituents [26]. Sol-
vent molecules migrate in a gel by self-diffusion. When hydrogels are subjected to
mechanical loadings or also when the chemical potential of the environment changes,
the polymer chain network deforms and the solvent molecules migrate to reach the
thermodynamic equilibrium [28]. This equilibrium is reached as soon as the chem-
ical potential of the solvent equals to that in the external solution. The mechanical,
thermodynamic and kinetic properties of various environmentally sensitive hydro-
gels have been modeled and analyzed to study the different interesting phenom-
ena exhibited, namely the phase transition and instability during swelling [2, 6, 20].
The interaction of mechanics and absorption of a swelling solvent in polymeric gels
encompasses many important phenomena like environmental stress cracking, phase
transformations, and cavitation to quote few. Very useful and recent presentations
of the subject, based on continuum theories, may be found in a series of publica-
tions [3, 6, 9, 8, 12, 20, 36, 39] and references cited therein.

Poor toughness of soft porous biomaterials may results in failure which is an issue
of importance to both engineering and medical practice [23, 37, 4]. An understanding
of failure mechanisms turns out to be crucial in the study of fracture of these biomate-
rials. Cavitation is an important failure mode in elastomeric materials which includes
situations where failure is mediated by environmental factors. Because of its close
connection with material failure inception, cavitation has received much attention
from the materials and mechanics communities [4, 16, 18, 21, 25]. Physical evidence
showed that sufficiently large tensile loads can induce the sudden appearance of in-
ternal microvoids in elastomeric solids. Gent and Lindley [18] considered cavitation
as the result of unlimited elastic expansion of a pre-existing microvoid. They used the
elastic theory of void inflation to successfully correlate the critical load for cavitation
with the corresponding one necessary for the unbounded growth of a microvoid in
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an infinite medium. These authors conducted experimental investigations showing
that the critical load for cavitation was directly related to the elastic modulus. On the
other hand, the occurrence of such instabilities can also be attributed to the growth
of pre-existing defects into finite sizes. In Ball’s approach [4] cavitation is the start of
a traction-free void within a nonlinear elastic solid as the consequence of reaching a
critical load. Reviews as well as further details dealing with cavitation can be found
for example in [16, 21]. Pence and Tsai [35] have extended the Ball’s approach to
account for the absorption of a swelling solvent resulting in volumetric changes at a
fixed degree of swelling. They concluded that a Treloar material [38] always supports
cavitation under uniform swelling provided that the load is sufficiently large. Duda
et al. [12, 11] have shown that there is a critical value for the interaction parameter χ
below which a Treloar material does not support cavitation regardless of the magni-
tude of the load. In addition, Zimberlin et al. [41], using a syringe needle to prescribe
an internally pressurized void within a gel material, have proposed a method named
“cavitation rheology testing” allowing the determination of the local modulus of the
gel material. From these very short comments regarding the quantitative prediction
of the occurrence of cavitation in real soft materials, it can be kept in mind that fun-
damental problems dealing with this subject remain largely unresolved [30, 29].

In addition to this, let us mention briefly that the toughness of a material depends
on the ability of the microstructure to dissipate energy without propagation of de-
fects like initiated microvoids or cracks [23, 37]. Subsequently, the understanding
of failure mechanisms would also provide insight and afterwards enhancement into
the production of tissue-engineering scaffolds with properly appropriate architecture
and tailored properties. Scaffolds can be designed as porous structure (sponges) or
in forms of hydrogels. Sponges facilitate cell adhesion and the pore size variation
affects cell adhesion, migration and deposition. Hydrogels support the transportation
of cells and bioactive agents and can suspend cells in a three dimensional environ-
ment. Keeping the focus on the porosity, among the essential characteristics that ideal
scaffolds should share in order to be successful are the following [33, 32, 31] : i) the
scaffolds should have high permeability to enable adequate diffusion of nutrients for
the cells and the removal of waste products; ii) the cell supports porosity should be
sufficiently high to allow for the ingress of cells and provide the cells space to prolif-
erate and form the ECM; iii) they should have a large surface area; and iv) the pore
size should be fine-tuned to the cells type applied.

As regard overall properties, the presence of those microscopic defects can have
drastic consequences at the macroscopic level. In this computational study, the growth
of a small spherical void within a polymeric gel is viewed through the prism of mi-
cromechanics [10, 34, 14] and finite element analysis. A two-level representation of the
material at hand is considered. The mesoscopic scale is treated through an axisym-
metric representative volume element (RVE) composed of two phases: a homogeneous
void free matrix and spherical void. The behaviour of the RVE is appropriately av-
eraged to provide the so-called macroscopic behaviour of the material considered as
homogeneous. The calculations are very similar to many earlier similar simulations,
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the prototype of which is due to Koplik and Needleman [24]. The boundary condi-
tions of the RVE are prescribed under proportional stressing in such a way that the
isotropically invariant stress triaxiality keeps a constant prescribed value throughout
the loading displacement controlled history. The paper is organized as follows. Fol-
lowing [6, 12, 20, 22, 35], a general framework for studying the uptake of a solvent
by a polymeric elastic solid is summarized in Section 2 where the basic constitutive
equations are recollected. A brief presentation of the multiscale analysis and the de-
scription of the RVE model for the considered material are introduced in Section 3.
Some of the obtained numerical results are presented in Section 4. Finally, concluding
remarks are given in Section 5.

2 Governing equations

The problem formulation and material modelling of hydrogels are briefly presented
in this section. Closely following works in [6, 12, 20, 22, 35], the governing equations
and corresponding boundary conditions for equilibrium swelling deformation of this
material are described. They serve as the basis for the numerical studies presented in
the subsequent sections.

2.1 Kinematics and balance equations of finite growth

Consider a hydrogel body (current state) of volume Ω enclosed by a surface Γ, sub-
jected to body force, b

¯
, and surface traction, t

¯
. Due to immersion of the hydrogel body

in a solvent environment of chemical potential µ (per solvent molecule), a transport
of the solvent molecules occurs within Ω and across Γ. In addition, part of the surface
Γ may be mechanically constrained (e.g., bounded to a rigid body) and/or chemically
isolated from the solvent. Due to large deformation, it is more appropriate to use
nominal quantities referring to a reference state with fixed volume Ωo and surface
Γo. A generic material particle occupying position X

¯
at the reference state moves to

position x
¯
(X

¯
, t) at the current state at time t. The deformation gradient tensor maps

both reference states, namely,

FiK =
∂xi(X

¯
, t)

∂XK
with J := det F

¯̄
> 0 (1)

While the choice of the reference state is arbitrary in general, we choose the dry state
of the hydrogel as the reference state in the present study. Such a choice is necessary
for the use of a specific free energy function. However, let us mention from now that
a numerical challenge has to be circumvented in finite element analysis by using an
intermediate configuration for which J �= 1. The equation of force balance in terms of
the nominal stress s

¯̄
and boundary conditions can be set as follows

∂siK(X
¯

, t)

∂XK
+ Bi(X

¯
, t) = 0 and X

¯
= X̄

¯
or siKNK = T̄o

i (2)

where T̄
¯

o
is traction per unit area of the reference surface with the unit outward

normal N
¯

and the barred quantities are prescribed. In the circumstance of absence of
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any chemical reaction, the conservation of the number of injected small molecules at
the chemical potential µ into the gel, in the vicinity of X

¯
, read

∂C(X
¯

, t)

∂t
+

∂JK(X
¯

, t)

∂Xk
= r(X

¯
, t) (3)

where r is the number of the small molecules per unit time injected into a volume
element dV, J NK dA is the number of the small molecules per unit time crossing an
element of area N

¯
dA, and C be the concentration of the solvent number. The poly-

mers and the individual small molecules are assumed to be incompressible, which is
reflected in the incompressibility condition

1 + v C(F
¯̄
, C) = J (4)

where ν is the volume per small molecule and ν C is the volume of the small molecules
in the gel divided by the volume of the dry polymers.

2.2 Constitutive equations

Standard reasoning in thermodynamics accounting for condition of molecular in-
compressibility through the use of a field of Lagrange multiplier Π results in (refer
e.g., [6, 19, 39] and also to above mentioned references)

siK =
∂W(F

¯̄
, C)

∂F
¯̄

− Π JHiK , µ =
∂W(F

¯̄
, C)

∂C
+ Π v (5)

where W is the free energy of the gel and H
¯̄

is the transpose of the inverse of the
deformation gradient F

¯̄
, , namely, HiKFiL = δKL and HiKFjK = δij

1.
For the dissipation due to solvent migration, we can correlate the solvent flux, J, to

its driving force, the chemical potential gradient, as

J = −M∇Xµ (6)

The spatial differential operator ∇X is taken with respect to the reference configu-
ration. The kinetic tensor M may not be constant in general, but is all positively
definite.

The choice of an explicit form of the free-energy function W for elastomers and soft
tissues is a controversial problem. This choice is needed in order to solve the initial
value problem under consideration. Following Flory and Rehner [15], W has the form
W(F

¯̄
, C) = Ws(F

¯̄
, C) + Wm(C) reflecting the stretching network of the polymers, Ws,

and the mixing of the polymers and the small molecules, Wm. These two terms are
taken to be

Ws(F
¯̄
, C) =

1

2
NkT(FiK FiK − 3 − 2 log J)

Wm(C) = −
kT

v

[
vClog

(
1 +

1

v C

)
+

χ

1 + v C

]
(7)

1Algebraic identity:
∂ (det F)

∂FiK
= det FHiK

5

126



L. Larbi, M. Elkolli and S. C. Gangloff

where N is the number of polymer chains in the gel per unit volume of the dry
polymers, v is the volume per solvent molecule, T is the absolute temperature, and k
is the Boltzmann constant. The first term inside the bracket comes from the entropy of
mixing, and the second from the enthalpy of mixing. The Flory interaction parameter
χ is a dimensionless measure of the enthalpy of mixing, with representative values
χ = 0− 1.2. For applications that prefer gels with large swelling ratios, materials with
low χ values are used. The enthalpy of mixing motivates the small molecules to enter
the gel if χ < 0, but motivates the small molecules to leave the gel if χ > 0. The
chemical potential and stresses are normalized by k T and k T/v, respectively. The

material properties of the hydrogel is fully determined by three parameters: NkT, kT
v ,

and χ. The first two combine to give one dimensionless parameter, Nv. It is well
known that NkT defines the initial shear modulus of the polymer network, with the
number N proportional to the crosslink density ρc,[39, 38]. A representative value of
the volume per molecule is v = 10−28 m3. At room temperature, k T = 4× 10−21 J and
k T/v = 4 × 107 Pa. In the numerical examples below, we will take the values N v =
10−3 and χ = 1.2. The normalized chemical potential is mimicked by a temperature-
like variable, which is uniform in the polymeric gel, and is incremented as a loading
parameter. The whole governing equations and the thorough approach have been
implemented into Abaqus via a UHYPER subroutine. [20, 22, 40].

3 THE AXISYMMETRIC RVE MODEL

The voids are assumed to be uniformly distributed inside the matrix material as
shown in Figure 1-a. Specifically, the position of these voids are presumed to form a
hexagonal crystal lattice in such a way that the shape of the unit microstructure is a
prism with hexagonal basis face with inner radius Ro, height 2 Lo, and containing an
initially spherical void with radius ro. In order to reduce the effort of calculations to
a two-dimensional analysis, the cross section of the unit microstructure has been sim-
plified as a cylinder, as done in [5, 24]. Due to this approximation, the axisymmetric
RVE is shown in Figure 1-d for which a cylindrical reference coordinate system with
radial coordinate R, circumferential angle Θ and axial coordinate Z is used for the
analysis. In the initial undeformed configuration, the RVE model is a cylinder with
diameter 2 Ro and height 2 Lo = 2 Ro (for the sake of simplicity). The initial axisym-
metric RVE geometry is then simply characterized by the initial void volume fraction

fo given by fo =
2
3

(
ro
Ro

)3
. The RVE model is assumed to be subjected to axisymmetric

deformations with constant prescribed overall triaxiality so that all field quantities are
independent of Θ.

As a consequence of the lattice periodicity all outer planes of the unit cell have to
move as rigid planes in coordinate directions during the process of loading (Figure 2).
The faces at R = Ro and Z = Lo will have a uniform normal displacements and
their mutual orientations will be maintained. These requirements impose the RVE
model to remain, during the finite strain deformation process, a cylinder which is
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×

2 Ro

2
L

o

×

×

a)
b) c)

d)

Axisymmetric RVE

E
¯ X

E
¯ Y

E
¯ Z

E
¯ R

E
¯ Z

Figure 1: Three-dimensional hexagonal arrangement of spherical voids. a) Schematic
representation of a porous polymeric gel which is considered as an array of unit

hexagonal RVEs, each containing a single spherical void. The porous unit hexagonal
microstructure shown in (b) is approximated by the axisymmetric RVE model

displayed in (d).

thus characterized in an arbitrary state by ℓR = Ro + uA
R and ℓZ = Lo + uA

Z where uA
R

and uA
Z are the radial and axial components displacement of the upper right corner A.

Because of these constraints, only one quarter geometry of the RVE model (0 ≤ R ≤
Ro, 0 ≤ Z ≤ Lo) needs to be analyzed and is drawn in Figure 2.

The overall deformation of the RVE model can be calculated from the normal dis-
placements of the outer faces. The macroscopic total logarithmic strain tensor and
Cauchy stress tensor possess the same principal directions, which are the radial and
axial directions. The effective strain Ee defined by Ee =

2
3 |EZ − ER| where ER and EZ

are the macroscopic principal strains, is chosen as the overall deformation of the RVE
model and the independent variable for presenting most results. The effective von
Mises stress Σe , hydrostatic stress Σh, and the overall stress triaxiality T result from

Σe = |ΣZ − ΣR| , Σh =
1

3
(ΣZ + 2 ΣR) , T :=

Σh

Σe
=

1

3

(ΣZ + 2 ΣR)

|ΣZ − ΣR|
(8)

where ΣR is the remote macroscopic principal stresses in both R and Θ directions,
and ΣZ in the Z-one. The RVE model is presumed to be remotely loaded with pre-
dominant axial stress; that is the axial direction is assumed to be the maximum prin-
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×

×

Ro

L
o

×

A

ΣR

ΣZ

Mechanical loading

ΣZ ≥ 0

ΣR = α ΣZ

α is kept constant

T =
1

3

(1 + 2α)

|1 − α|
E
¯ R

E
¯ Z

Figure 2: Axisymmetric RVE model containing an isolated spherical void and to be
FE analyzed.

cipal direction and the components of the overall stress tensor Σ
¯̄

are then such that
ΣZ ≥ ΣR.

× ×

Solvent with chemical potential µ

Polymer imbibed with a solvent which migrates
into (out of) the RVE model through its boundary

Dry polymer
network Swelling

Deswelling

E
¯ R

E
¯ Z

Figure 3: Swelling-deswelling of the axisymmetric RVE model. After swelling the
porosity is maintained constant.

For metal, it is a well known fact that the stress triaxiality ratio T is the most im-
portant driving force to void growth in porous materials [5, 24]. On that account, a
general problem in RVE model computations is to maintain T constant in the course
of loading irrespective of the large displacement of the cell faces and the unstable
stiffness behaviour. The finite elements used were eight-nodes quadrilateral isopara-
metric elements. The mesh surrounding the void is slightly refined and it was judged
to be sufficiently refined for this study (800 Q8 elements). Care has been taken to in-
sure that the meshes were sufficiently refined and that the results were independent of
the degree of refinement. The Riks’s arc-length method in Abaqus is used in order to
handle the inevitable instability of the RVE and to proceed with further calculations.
The overall stress and strain rates are directly computed from the reaction forces and
the applied displacement rates. The actual void volume fraction f corresponding to
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the evolution of the microvoid is calculated using numerical integration from the up-
dated coordinates of the nodes at the void-matrix interface during the deformation of
the RVE model. The initial conditions and loading rate of the RVE model are chosen
such that inertial effects are negligible. No artificial damping has been used in all
computations. The value of the imposed axial displacement uA

z depends essentially
upon the value of fo and the fixed stress triaxility T as well. In addition, the imposed
boundary conditions have to be ramped up using a function of time over the first part
of calculation (typically the first 1-10%).

Before to proceed further, it is important to mention that the prevalent approach of
modeling the porous biomaterial at hand as an assemblage of axisymmetric unit RVEs
reduces the amount of work required for the multiscale analysis. This convenience
comes with an approximation since this assemblage cannot patently fill the space
continuously, and then is only suited for moderate porosity. Furthermore, the used
axisymmetric RVEs do not allow the adjustment of arbitrary stress ratios in three
directions.

4 NUMERICAL RESULTS

For the simulation presented hereafter, the chosen hydrogel properties are the fol-
lowing: initial polymer volume fraction φo = 0.90, degree of cross-linking Nv =
0.0010, and parameter χ = 0.10. At the reference state corresponding to an initially
swollen hydrogel of properties φo, Nv and χ, its initial chemical potential is prescribed

by µo/kT given by µo/kT = Nv(φ1/3
o − φo) + ln(1 − φo) + φo + χφ2

o = −1.3216. This
prescribed value is accounted for in Abaqus as an initial condition [40]. The porosity
fo takes on values 0.10, 0.50, 1.0, 2.0, 5.0 and 10.0%. The stress triaxiality T ranges from
1/3 (pure tension) to 2 (severe stress state for soft materials). However, in the interest
of place, hereafter only the value fo = 5% is considered.

The swelling-mechanical loading of the RVE model at hand may be summarised
as follows: (a) the polymer network of the RVE model with initial porosity fo is first
imbibed with solvent as shown in Figure 3. Subsequently, homogeneous swelling
occurs and the size of the RVE model changes a lot irrespective of the value of fo.
At equilibrium the chemical potential µ is homogeneous throughout the RVE model
which porosity after swelling turns out to be practically equal to fo. (b) The swelled
RVE model is then subjected to axial and lateral overall stresses under conditions of
constant prescribed overall stress triaxiality. Contour plots at the end of calculations
of the lagrangian strain component LE22 are shown in Figure 4 for T = 1

3 , 1 and 2. For

each of these values of T, the evolution of the normalized effective stress, Σe
kT and the

porosity f are displayed in Figure 5 as a function of the equivalent strain Ee.
It is to be noted that for moderate stress triaxiality (e.g., T = 1

3 corresponding to
a tensile test), the equivalent stress Σe continuously increases with equivalent strain
Ee. The same applies to the variations of void volume fraction f in terms of Ee, (red
curves in Figure 5). By way of example, it can be observed from Figure 5 that for T = 1

(magenta curve) beyond the peak stress corresponding to Ee = 0.39, (Σe
kT )

max = 1.22×

9
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Freely swelled RVE model
(configuration before
mechanical loading)

(a) T = 1
3

(pure tension)

(b) T = 1

(c) T = 2
3.44 mm

3.
44

m
m

uz = 1.93 mm uz = 2.34 mm uz = 4.98 mm

E
¯ R

E
¯ Z

Figure 4: Distribution of lagrangian strain component LE22 at the end of calculations
and final deformation shape of the RVE model for fo = 0.05. The hydrogel properties

are φo = 0.90, Nv = 0.0010, and χ = 0.10. The mechanical loading of the freely
swelled RVE model has been performed under constant stress triaxiality ratio T = 1

3
(a), 1 (b), and 2 (c).
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Figure 5: Evolution of the normalized equivalent stress Σe
kT and the void volume

fraction f in terms of the macroscopic equivalent strain Ee of the RVE model. The
initial value of the void volume fraction is fo = 0.050 and along the whole process of

deformation the overall stress triaxiality T is kept constant.

10−3, and f = 38.6 %, the void volume fraction increases very quickly. Figures 6–8

shows the deformation of the RVE model and the evolution during the whole process
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of loading of the lagrangian strain component LE22 for T = 1/3 (a), T = 1 (b) and
T = 2 (c), respectively.

uz = 0.97 mm

uz = 1.97 mm

uz = 2.97 mm

uz = 3.97 mm

uz = 4.97 mm

f = 0.061 f = 0.117E
¯ R

E
¯ Z

Figure 6: Deformation of the RVE model and evolution of contours of the lagrangian
strain component LE22. The initial porosity is fo = 0.050 and along the whole

process of loading the triaxiality is kept constant: T = 1/3 (pure tension).

uz = 0.79 mm
uz = 1.87 mm

uz = 3.02 mm
uz = 4.05 mm

uz = 5.74 mm

f = 0.092 f = 0.600E
¯ R

E
¯ Z

Figure 7: Deformation of the RVE model and evolution of contours of the lagrangian
strain component LE22. The initial porosity is fo = 0.050 and along the whole

process of loading the triaxiality is kept constant: T = 2.

Figure 9 displays similar results as those shown in Fig. 5 for fo ranging from 0.1 % to
10.0 %. It is to be noted that for T = 1, each curve macroscopic equivalent stress versus
macroscopic equivalent strains has a maximum depending on the initial value of the
void volume fraction. Lower the initial value fo of the void volume fraction, higher the
reached value of the relevant peak stress. Table 1 shows the obtained associated values

of
(

Σe
k T

)max
, Ee, f , and the imposed axial displacements uZ for fo = 0.1, 0.5, 1.0, 2.0, 5.0

and 10.0 %. Beyond macroscopic peak stresses, the void volume fraction rapidly
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increases. In this connection, it should be kept in mind that special care would be
considered after maximum load occur in the vicinity of the boundary of void. Indeed,
it is well known that strong softening of the material result in localized deformation
and consequently the mesh size dependence. After the peak macroscopic stresses the
equivalent stress drops abruptly and the validity of the numerical results is expected
to quickly deteriorate because of mesh excessive distortion. In addition, it should be
important to keep in mind that for the analysis presented above a criterion for the
final failure of the intervoid ligament is clearly missing.

uz = 0.82 mm

uz = 1.79 mm
uz = 3.32 mm

uz = 3.95 mm

uz = 5.89 mm

f = 0.120 f = 0.606E
¯ R

E
¯ Z

Figure 8: Deformation of the RVE model and evolution of contours of the lagrangian
strain component LE22. The initial porosity is fo = 0.050 and along the whole

process of loading the triaxiality is kept constant: T = 2.
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Figure 9: Evolution, for T = 1, of the normalized effective stress and the void volume
fraction in terms of the macroscopic effective strain Ee of the RVE model.
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Table 1: Normalized maximum macroscopic equivalent stresses
(

Σe
k T

)max
and the

corresponding macroscopic equivalent strain Ee, void volume fraction f , and axial
displacements uZ. The stress triaxiality T is equal to 1.

fo (%)

(
Σe

k T

)max

f (%) Ee uZ (mm)

0.1 2.35 × 10−3 15.8 0.53 2.75

0.5 1.93 × 10−3 20.9 0.47 2.50

1.0 1.74 × 10−3 23.9 0.44 2.40

2.0 1.53 × 10−3 26.9 0.41 2.23

5.0 1.22 × 10−3 38.6 0.37 2.33

10.0 0.96 × 10−3 46.7 0.34 2.32

5 CONCLUDING REMARKS

This study focuses on the mechanical behaviour of porous polymeric gels intended
for use in tissue engineering and regenerative medicine as scaffolds. Following Hong
et al. [20] and Koplik and Needleman [24], we present a computational framework
for investigating the growth of microvoids initially assumed to be spherical and uni-
formly distributed inside the matrix material. The evolution of the size and the shape
of the microvoid has been obtained under the conditions that i) the ambient chemical
potential of the solvent is fixed, ii) the chemical equilibrium prevails at the interface
between the polymer and the environment interface, and iii) the mechanical loading
of the RVE is such that the stress triaxiality ratio is maintained constant throughout
the whole process of deformation. The following conclusions are drawn:
• For a porous polymeric gel, the amount of solvent molecules inside the material

is related to the chemical potential of the environment. The degree of swelling
is obtained by solving equations that account for the simultaneous interaction of
mechanics and absorption. It can be determined with a free swelling stretch, using
a finite element analysis.

• As an expected result, the value of the initial void volume fraction has a large
influence on the overall mechanical behaviour of a porous polymeric gel. Higher the
initial value of the void volume fraction, lower the resistance (maximum equivalent
stress) of the polymeric gel.

• The size of the swollen axisymmetric porous RVE model does not depend on the
initial value of the void volume fraction and the porosity is kept constant after
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swelling.
• For moderate stress triaxiality, e.g., T = 1

3 , the macroscopic equivalent stress con-
tinuously increases with macroscopic equivalent strain. The same applies to the
variations of the void volume fraction.

• For high stress triaxiality, the curves macroscopic equivalent stress vs macroscopic
equivalent strain display maximum depending on both the initial porosity and the
fixed value of the overall triaxiality.

• Finally, so far for the analysis presented above a criterion for the final failure of the
intervoid ligament is clearly missing.

The investigation of the effects of the constitutive parameters entering the theory,
namely, the number N of polymer chains per unit volume of the dry polymers, the
volume per solvent molecule v, and the Flory interaction parameter χ, on the overall
behaviour of a porous polymeric gel are contemplated as a future research work. The
fact of the matter is that this preliminary study could be of some relevance in regard
to failure of responsive polymeric gels. Numerous tissues and organs are hydrogel-
like in nature and several issues related to the mechanics of hydrogels remain open
(a short list is given in the review [28]). With increment of biomedical applications,
computational modelling to predict the performance of these biomaterials for use in
regenerative medicine and tissue engineering proves to be a valuable aid in assisting
understanding of the behaviour of hydrogels and their optimization as well.
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