184,581 research outputs found

    Automated secure room system

    Get PDF
    Automated security systems are a useful addition for today's home where safety is essential. Vision-based security systems have the greater advantages over the traditional security systems such as using the lock, observing by the security guard, using alarm signal etc. This paper proposed an integrated dual-level vision-based home security system, which consists of two subsystems - a) movement detection and b) hand verification system. The primary movement detection technique is used to detect any movement first and the system verifies the authorized person for any secured place. It will check the threshold value where if the threshold level exceeds and the verification flag is off, the alarm will be triggered. Otherwise, if verification flag is on, it means the person is authorized and movement detection will be turned off for this person. On an event of a failure in the primary system, the secondary hand geometry verification module can act as a reliable backup to detect authorized person in a restricted area. Several experiment results have shown good performance and feasible implementation in both cases

    Analysis of Hand Segmentation in the Wild

    Full text link
    A large number of works in egocentric vision have concentrated on action and object recognition. Detection and segmentation of hands in first-person videos, however, has less been explored. For many applications in this domain, it is necessary to accurately segment not only hands of the camera wearer but also the hands of others with whom he is interacting. Here, we take an in-depth look at the hand segmentation problem. In the quest for robust hand segmentation methods, we evaluated the performance of the state of the art semantic segmentation methods, off the shelf and fine-tuned, on existing datasets. We fine-tune RefineNet, a leading semantic segmentation method, for hand segmentation and find that it does much better than the best contenders. Existing hand segmentation datasets are collected in the laboratory settings. To overcome this limitation, we contribute by collecting two new datasets: a) EgoYouTubeHands including egocentric videos containing hands in the wild, and b) HandOverFace to analyze the performance of our models in presence of similar appearance occlusions. We further explore whether conditional random fields can help refine generated hand segmentations. To demonstrate the benefit of accurate hand maps, we train a CNN for hand-based activity recognition and achieve higher accuracy when a CNN was trained using hand maps produced by the fine-tuned RefineNet. Finally, we annotate a subset of the EgoHands dataset for fine-grained action recognition and show that an accuracy of 58.6% can be achieved by just looking at a single hand pose which is much better than the chance level (12.5%).Comment: Accepted at CVPR 201

    A Unified Model for Tracking and Image-Video Detection Has More Power

    Full text link
    Objection detection (OD) has been one of the most fundamental tasks in computer vision. Recent developments in deep learning have pushed the performance of image OD to new heights by learning-based, data-driven approaches. On the other hand, video OD remains less explored, mostly due to much more expensive data annotation needs. At the same time, multi-object tracking (MOT) which requires reasoning about track identities and spatio-temporal trajectories, shares similar spirits with video OD. However, most MOT datasets are class-specific (e.g., person-annotated only), which constrains a model's flexibility to perform tracking on other objects. We propose TrIVD (Tracking and Image-Video Detection), the first framework that unifies image OD, video OD, and MOT within one end-to-end model. To handle the discrepancies and semantic overlaps across datasets, TrIVD formulates detection/tracking as grounding and reasons about object categories via visual-text alignments. The unified formulation enables cross-dataset, multi-task training, and thus equips TrIVD with the ability to leverage frame-level features, video-level spatio-temporal relations, as well as track identity associations. With such joint training, we can now extend the knowledge from OD data, that comes with much richer object category annotations, to MOT and achieve zero-shot tracking capability. Experiments demonstrate that TrIVD achieves state-of-the-art performances across all image/video OD and MOT tasks.Comment: (13 pages, 4 figures

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Towards Vision-Based Smart Hospitals: A System for Tracking and Monitoring Hand Hygiene Compliance

    Get PDF
    One in twenty-five patients admitted to a hospital will suffer from a hospital acquired infection. If we can intelligently track healthcare staff, patients, and visitors, we can better understand the sources of such infections. We envision a smart hospital capable of increasing operational efficiency and improving patient care with less spending. In this paper, we propose a non-intrusive vision-based system for tracking people's activity in hospitals. We evaluate our method for the problem of measuring hand hygiene compliance. Empirically, our method outperforms existing solutions such as proximity-based techniques and covert in-person observational studies. We present intuitive, qualitative results that analyze human movement patterns and conduct spatial analytics which convey our method's interpretability. This work is a step towards a computer-vision based smart hospital and demonstrates promising results for reducing hospital acquired infections.Comment: Machine Learning for Healthcare Conference (MLHC
    corecore