3 research outputs found

    Interaction prediction for content synchronization of net-based shared workspaces

    Get PDF

    Simulateur collaboratif de chirurgie d'instrumentation du rachis scoliotique en réalité virtuelle avec interface haptique logicielle

    Get PDF
    RÉSUMÉ La scoliose est une dĂ©formation tridimensionnelle de la colonne vertĂ©brale qui nĂ©cessite, dans les cas graves, une intervention chirurgicale invasive et trĂšs dĂ©licate visant Ă  redresser la colonne. Les outils disponibles pour l’entraĂźnement des mĂ©decins, tels que les cadavres et les rachis synthĂ©tiques, prĂ©sentent des inconvĂ©nients majeurs : les jeunes cadavres disponibles atteints de scoliose se font rares; le rĂ©alisme du comportement biomĂ©canique est questionnable; ces deux types d’outils ne peuvent ĂȘtre rĂ©utilisĂ©s; ils ne reprĂ©sentent pas toute la variĂ©tĂ© des cas scoliotiques. Les technologies de la rĂ©alitĂ© virtuelle et les simulations numĂ©riques peuvent offrir des solutions pour contourner ces inconvĂ©nients. Afin d’aborder cette problĂ©matique, l’objectif gĂ©nĂ©ral de la recherche a consistĂ© Ă  Ă©laborer un prototype logiciel de simulateur collaboratif de chirurgie d’instrumentation du rachis scoliotique en rĂ©alitĂ© virtuelle incluant un retour d’effort logiciel pour les manoeuvres correctrices principales de la chirurgie, offrant ainsi un outil d’entraĂźnement et d’apprentissage alternatif aux outils traditionnels. Ce projet est entrĂ© dans la continuitĂ© des travaux de recherche d’étudiants et d’associĂ©s de recherche de la Chaire de recherche industrielle CRSNG/Medtronic en biomĂ©canique de la colonne vertĂ©brale, et s’est distinguĂ© principalement par la mise en place de l’aspect collaboratif pour un contexte d’entraĂźnement rĂ©aliste avec des participants distants, ainsi que le dĂ©veloppement et l’évaluation d’une interface haptique logicielle. La revue bibliographique a suggĂ©rĂ© que la chirurgie orthopĂ©dique ne semble pas encore bĂ©nĂ©ficier du potentiel offert par la rĂ©alitĂ© virtuelle et les interfaces haptiques quant Ă  la simulation et Ă  l’entraĂźnement virtuel autant que d’autres types de chirurgies. La plupart des chirurgies pour lesquelles des simulateurs ont Ă©tĂ© dĂ©veloppĂ©s impliquent des organes dĂ©montrant une certaine compliance, un espace de travail relativement restreint et des forces de faibles amplitudes, pouvant ĂȘtre simulĂ©es Ă  l’aide de systĂšmes haptiques commerciaux gĂ©nĂ©riques. Au contraire, la chirurgie d’instrumentation du rachis scoliotique nĂ©cessite l’application d’efforts de grande amplitude pour des mouvements relativement lents Ă  peu de degrĂ©s de libertĂ©, requĂ©rant un systĂšme haptique spĂ©cifique. De plus, les modĂšles physiques, bien que plus complexes et lourds en termes de temps de calculs que les modĂšles gĂ©omĂ©triques, sont nĂ©cessaires Ă  l’obtention d’une expĂ©rience haptique rĂ©aliste. À la lumiĂšre de ces observations, nous avons Ă©mis deux hypothĂšses de recherche. La premiĂšre hypothĂšse supposait que les principales manoeuvres correctrices effectuĂ©es lors d’une chirurgie d’instrumentation du rachis scoliotique peuvent ĂȘtre modĂ©lisĂ©es et simulĂ©es en rĂ©alitĂ© virtuelle immersive Ă  l’aide d’une interface haptique logicielle et d’un modĂšle biomĂ©canique personnalisĂ© Ă  ±15 % des valeurs d’efforts rĂ©elles telles que perçues par des chirurgiens experts. La seconde hypothĂšse supposait qu’une boucle de rendu haptique multifrĂ©quence, basĂ©e sur un algorithme de prĂ©diction / correction, permettra d’atteindre la frĂ©quence minimale requise (1000 Hz) pour un retour d’effort fonctionnel dans un contexte d’entraĂźnement rĂ©aliste.---------ABSTRACT Scoliosis is a three-dimensional deformation of the spine requiring, in severe cases, a highly delicate and invasive surgical operation to correct the spinal deformities. Available tools for surgical training, such as cadavers and synthetic spines, have major drawbacks: limited availability of young cadaveric spines with scoliosis; questionable behaviour realism; destruction after first use; limited variability in scoliotic cases for training. Virtual reality technologies and computer simulations can offer solutions to these drawbacks. To address this problem, the general objective of this research consisted in elaborating the software prototype of a collaborative virtual reality scoliosis instrumentation surgery simulator, including force feedback for the main corrective surgical manoeuvres, as an alternative training and learning tool. This project has been a continuation of previous work from graduate students and research associates of the NSERC/Medtronic Industrial Research Chair in Spine Biomechanics, and focused on setting up and testing the collaborative aspect for a realistic training context with remote participants, as well as developing and evaluating a software haptic interface. The literature review suggested that orthopaedic surgery does not seem to benefit from virtual reality technologies and haptic interfaces regarding simulation and virtual training as much as other types of surgeries. Most surgeries for which simulators have been developed involve organs with a certain compliance, a relatively confined workspace and “delicate” forces, and can be simulated with generic commercial haptic devices. On the contrary, scoliosis instrumentation surgery involves the application of high forces through moderately slow and of few degrees of freedom movements, requiring a haptic device specific to scoliosis surgery. Also, physical models, although more complex and computationally expensive than geometric models, are necessary for a realistic haptic experience. In light of these observations, we stated two hypotheses. The first hypothesis was that the main corrective manoeuvres of scoliosis instrumentation surgery can be modeled and simulated in immersive virtual reality with a software haptic interface and a patient-specific biomechanical model at ±15 % of the actual force values as perceived by expert surgeons. The second hypothesis was that a multirate haptic rendering loop, based on a prediction / correction algorithm, will achieve the minimal required update rate (1000 Hz) for a functional force feedback in a realistic training context

    Gesture Interaction at a Distance

    Get PDF
    The aim of this work is to explore, from a perspective of human behavior, which\ud gestures are suited to control large display surfaces from a short distance away; why that is so; and, equally important, how such an interface can be made a reality. A well-known example of the type of interface that is the focus in this thesis is portrayed in the science fiction movie ‘Minority Report’. The lead character of this movie uses hand gestures such as pointing, picking-up and throwing-away to interact with a wall-sized display in a believable way. Believable, because the gestures are familiar from everyday life and because the interface responds predictably. Although only fictional in this movie, such gesture-based interfaces can, when realized, be applied in any environment that is equipped with large display surfaces. For example, in a laboratory for analyzing and interpreting large data sets; in interactive shopping windows to casually browse a product list; and in the operating room to easily access a patient’s MRI scans. The common denominator is that the user cannot or may not touch the display: the interaction occurs at arms-length and larger distances
    corecore