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Interaction Prediction for Content Synchronization of Net-based Shared Workspaces

Bastian Migge, Andreas Kunz

Institute for Machine Tools and Manufacturing
ETH Zurich

Zurich, Switzerland
{miggeb,kunz}@ethz.ch

Abstract—Digital collaborative environments enable spatially
separated users to access and modify shared data over network.
However, transmission delays of the network lead to inconsis-
tent data and reduce the efficiency of collaboration due to
interaction conflicts.

In this paper, we present a predictive screen-locking al-
gorithm to avoid interaction collisions on net-based shared
interactive screens. A model-based predictor calculates the
user’s next interaction given his past one. The algorithms locks
critical objects to the remote station which is less likely to
interact with the object. Although the predictor continuously
adapts to the user’s interaction behavior, an initial interaction
model is needed when the collaboration session is started.
Hence, we deduce a reasonable, probabilistic interaction model
from a large screen collaboration user study.

Keywords-Networked collaboration, Human-computer inter-
faces, User modeling

I. INTRODUCTION

In today’s global enterprises, net-based collaboration be-

comes increasingly important, since it enables global dis-

tributed teams to increase working performance [1] without

increasing travel expenses. However, for a long time there

was a diffuse rejection of tele-collaboration systems, since

they did not provide the functionalities and immersion as

collocated meetings. Today, digital collaboration systems

such as large interactive whiteboards and tables provide

workspace sharing, which is intuitively operated with touch

interaction and TUI (Tangible User Interfaces) manipula-

tion. Additionally, audio and separate video transmission is

widely used, so that net-based collaboration gains popular-

ity. However, when users are collaborating over network,

the transmission latency affects the synchronization of the

collaborative space and the immersion for the user. Although

common round-trip latency lays around 100 ms [2], high

variance leads to significantly higher delays up to multiple

seconds [3].

Unavoidable network delays lead to synchronization er-

rors: On a shared workspace, a user A interacts with an

object based on its current state (e.g. position, shape). If,

however, a remote user B is also manipulating the same

object at the same time, the changes of user B are not visible

to user A due to the network delay. As a result, the data of

the shared workspace gets inconsistent. This problem get

even more critical since digital shared workspaces allow

that user A and B interact at the exact same position on

the virtual workspace a time, which would not be possible

in collocated collaboration due to haptic collision of the

physically present users.

Commonly, the synchronization inconsistency is either

been resolved by resetting both station to the last consistent

setup, or by defining a single master station, which controls

the workspace content. A new way to overcome the latency

problem is by interaction prediction in order to avoid si-

multaneous interaction on the same object. We introduce

a prediction software that calculates the future interaction

position of the user based on his last one. The prediction

enables to efficiently lock only the digital objects on the

remote station, which will be effected by the local user in

the next time step. Hence, the locking prevents collisions

that stem from network latency. To improve the locking

mechanisms, the prediction model of the user interaction

continuously adapts to the user’s behavior while the user

works with the system. Nevertheless, the controller needs an

initial interaction model to start with. We deduce a model for

predicting the user’s next interaction area from a user study

on two synchronized large interactive stations. The results

show that the interaction position is not - as initially assumed

- simply Gaussian distributed around the last interaction

position, since it depends on the use case as also proposed

in [4].

II. RELATED WORK

Common collaboration software, i.e. SMART Notebook

[5], avoid the problem of synchronization by transmitting

a painted stroke after the local user has finished drawing

(’lift up’). As a result, the remote user does not see the

new content until it is done. In case of painting applications

it is, moreover, reasonable to assume that strokes are not

manipulated afterwards by the remote station. On real time

synchronized systems like ClearBoard [6], CollaBoard [7],

or VideoArms [8] it is, however, crucial to keep the digital

content synchronized, since the strokes are shown in real

time. The digital content must already be exchanged while

the user is sketching, since a video of the user is shown

on top if the digital content transferring deictic gestures.

Keeping the workspace data synchronized to enable immer-

sion gets even more important if the collaboration software
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supports manipulating digital objects (i.e. pictures) in terms

of size, shape and position.

A. User Behavior Models

Most of the existing work in motion prediction addresses

to overcome the network latency in the research field of

digital virtual environments of distributed 3D applications,

such as computer games and virtual walkthroughs. Chan et

al. propose prediction methods for human hand motion [9]

and 2D computer mouse motion [10], [11] to navigate in

virtual environments.

In the context of overcoming the parallax error on interac-

tive screens [12], Migge et al. present a Markovian model to

predict the user’s position in front of large interactive screens

between interactions [4]. They presented an interaction po-

sition model for single user office applications [4]. Lewis

et.al. propose a synchronization method to support collab-

orative visualization [2]. However, the literature lacks for

interaction prediction on multi-user, net-based collaboration

environments.

B. Model Based Prediction

Prediction models describe the behavior of a system over

time (system dynamics). The system state is defined over a

continuous or discrete state space. With respect to the time

t, which also can be defined either discrete or continuous,

the system dynamics is modeled as transition function from

one state to another: Tt(sourceState) = sinkState. This

enables a predictor to calculate the future system state based

on the current one. However, if the system dynamics can not

be expressed with certainty, i.e. the user’s interaction behav-

ior on interactive screens, the system dynamics is modeled

probabilistically. A probabilistic system model describes the

probability of the system developing from one state to an-

other within a certain time: Tt(sourceState, sinkState) =
Pt(sinkState|sourceState). This enables the predictor to

take uncertainly into account. If the system dynamics de-

pends only on the last state in time, the system is called

Markovian. A Markov chain is a mathematical framework

to describe memoryless stochastic processes. Estimators,

i.e. Maximum-Likelihood, deduce a single state from the

probability distribution over the future states.

Constructing Markov chains from probability distributions

is done with Markov chain Monte Carlo algorithms. The

key idea of this family of algorithms is to deduce a Markov

chain that represents the desired distribution by sampling

against the original. Measuring the user’s behavior, i.e. the

interaction on interactive screens, provide such a probability

distribution.

In this paper, we will deduce a time invariant Markov

chain from measurement data that models the interaction

position on interactive surfaces probabilistically. The model

is applied to lock screen workspace regions on net-based

collaboration systems preemptively based on predicting the

user’s future interaction. The resulting lock controller over-

comes synchronization errors that stem from unavoidable

network latencies.

III. CONTRIBUTION

We present a collision avoidance controller to over-

come synchronization issues of network collaboration sys-

tems, that allow multiple users to remotely share a digital

workspace. Collisions occur, if two participants manipulate

the same object at a time. Due to the network latency of

the shared systems, the stations loose synchronization and

the workspace data differs at both stations. To overcome

this problem, we introduce a predictive controller that locks

objects at the remote station based on the next interaction

in time of the local user.

To anticipate the next user interaction position, a predic-

tion model is developed. Since the interaction of the user

strongly depends on the setup of the GUI, which differs

for each application, the correction controller starts with a

standard model and learns the user’s behavior while the user

works with the system. The learning data is automatically

transformed into the prediction model. Hence, the model is

adaptable to arbitrary applications.

A. Controller Working Principle

The goal of the controller is to avoid interaction collisions.

W.l.o.g. we introduce a bidirectional collaboration system,

with one controller implemented at each remote side.

The local controller blocks objects (i.e. strokes, pictures,

or screen regions), which might collide within the time

horizon of the network latency. The network latency is

measured as half of the network connection round-trip-

time. Colliding objects are defined as objects on the shared

workspace, which might be used by the local and the remote

users at the next time step. To lock colliding objects w.r.t. the

network latency, the controllers predict the next interaction

position of the users based on the last interaction and a

probabilistic model. Both controller continuously update the

model to presume the interaction position of the user from

adaptProbabilityModel() and get asynchronous updates from

the remote station in getPredictionRemote(). If a station

detects a probable collision, which means that both users

will interact with the same object at next time step with

a probability greater than T, the corresponding object is

locked for the user with less interaction probability. To avoid

deadlocks, all locks are freed initially. The predictive locking

algorithm, shown in Algorithm 1, is triggered by a user

interaction.

B. Prediction Model

The prediction model is defined as probabilistic in-

teraction model. It defines the local Interaction Position

in the next time step give the last interaction position

242242242



Algorithm 1 Predicitve locking algorithm

const T

while IP local = getLocalInteraction() do
unlockLocalScreen()

adaptProbabilityModel(IP local)

p local = P(*|IP local) � Query local model

p remote = getPredictionFromRemote()

for obj in screenObjects do
p match = p local(obj) · p remote(obj)

if (p match > T) then
if (p local(obj) < p remote(obj)) then

lockLocalScreen(obj)

end if
end if

end for
end while

P (IP localt+1|IP localt). For simplicity reasons, we as-

sume the interaction probability to be time invariant and

Markovian. The model is expressed as probability matrix

A of the size |partition| × |partition|. Each row defines

the probability of the next interaction, given by the column

index j, with respect to the current interaction given by the

row index i: A(i, j) = P (IP localt+1 = j|IP localt = i).
The prediction model is continuously adapted to the actual

user behavior by counting the number of interactions with

respect to it’s position and the last interaction while the user

is working with the system. A FIFO buffer is implemented,

to limit the history of considered interactions. To provide a

probability matrix, the resulting distribution is normalized

with the overall number of interactions.

C. User Study

In this section, we deduce a reasonable initial model

from a user study. We measure the interaction position of

users collaborating on large interactive screens, that are

synchronized remotely. We deduce a probabilistic model

of the user’s interaction behavior, which is used as initial

prediction model of the locking algorithm as described

above.

1) Setup and Task: We set up a user study in a col-

laboration environment to evaluate the interaction behavior

of the users, in particular the dynamics of the interaction

position. The collaboration environment consists of two

identical remote setups that are connected via network. Each

room contains a touch sensitive large interactive screen (65”

widescreen LC Display SHARP LCD PN 655E) with an

interaction tracking device (DViT PA 365 from SMART

Technologies [5] as shown in Figure 1. The system gathers

touch interaction with the user’s finger as well as with TUI’s

(eraser and color pens) in display resolution (1920 x 1080

[pixel]). Besides the shared workspace, a video of the remote

Figure 1. Remote collaboration system setup

user is shown on a small display. The video and audio link

is provided using Skype [13]. The digital content on the

screen is shared between the two remote stations in real

time by the CollaBoard-Software [7]. The software supports

sketching and displaying of image objects.

The overall number of subjects was 12 (10 male and 2

female) with a median age of 22.5 years. In each study, a pair

of users worked together remotely connected over network.

The subjects were students and research assistants from

our department. The participants were introduced in using

the collaboration system. Afterwards, the participants were

introduced in the task: Work together on the same problem

in the two different rooms of the collaborative environment.

They were told to solve the task as fast as possible.

The task of the study is designed to simulate a realistic

scenario. The users are motivated to communicate on a

everyday problem. In our study, we asked the users to design

a floor plan. Basic requirements, like the position of the

main door, are given to users. To enforce communication,

both participants got different requirements.

The interaction with the digital whiteboard is measured to

deduce the interaction model in order to predict the user’s

behavior. The time of the collaboration systems is synchro-

nized at startup and both stations logged the interaction time,

as well as the type of interaction (”lift up” or ”press down”)

and the position in two-dimensional display coordinates.

2) Measurement results: We analyzed the log files from

the user study, which contain the position and the type

of interaction. We analyze the occurrence of interaction

collisions between the two stations before we investigate the

sequence of interaction locations on the interactive screen.

Interaction Collisions: Based on 594 interactions on

the one and 510 interactions on the other station, we

investigate the number of collisions to motivate the lock

controller. We define collisions as two interactions, one at

the first and the other one at the second station, which occurs

at the same time and the same position. The chart in Figure 2

show the number of collisions with respect to different time

and space thresholds. The thresholds define the time interval
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Figure 2. Interaction collisions between remote stations

and spacial (euclidean) distance, in which we detect the two

interactions as collision. The chart shows the accumulated

number collisions for 4 time frames between ± 0.1 and

2 seconds, which respect to potential network delay. We

found that the number of collisions increase with increasing

the threshold in time and space. For a time interval of ±
1 second, the the two users did interact 119 times within

500 px (app. 350 mm) and even 33 times within a distance

of 100 px (app. 70 mm). Although we did not measure if

the collision did influence the work flow, since we did not

measure the context of the interaction, the results indicate

that collisions do occur on shared screens.

Interaction location: In total, 1104 interactions were

considered. An interaction is defined as placing the finger

or the TUI on the screen. The cumulated distribution of the

measurements in Figure 3 denotes that the user’s interaction

tends to be located in the mid left region of the screen.

It shows the interaction distribution P (IP localt) on 49

equally sized screen partitions independent of the last in-

teraction. The cumulated distribution is the composition of

all distributions, which depend on the previous interaction.

The axis are normalized to [0, 1], and the black color

indicates 110 interactions and plain white fields indicate zero

interactions.

The results confirm the findings in [4]. They showed that

the user interacts mainly in the left partition of the screen in

office environments. This also holds true for the sketching

use case of our study on large interactive screens.

Figures 4 and 5 show the probability of the next interac-

tion position IP localt+1 given that the previous interaction

IP localt took place in partition (3,1) respectively (3,3).

The gray-scale color indicates the probability weight: Black

p = 1 and white p = 0. Each matrix is linearized to a vector

and represents a row in the prediction model matrix A.

Similarly to the interaction behavior shown in Figure 4,

most of the results show that the user interacts mostly close

to the last interaction. The distribution differs in vertical and

Figure 3. Cumulated interaction distribution (normalized)

Figure 4. P (IP localt+1|IP localt = (3, 1))

horizontal dimension: The variance of the horizontal position

is higher than the vertical variance, which indicates a stable

vertical position but a user’s movement in the horizontal

direction. Although the horizontal mean lies within the

screen partition of the previous interaction, the distribution

clearly indicates that the user tends to interact in the mid left

region of the screen, as already shown in Figure 3. Since

the cumulated interaction probability (in the last section) is

not equally distributed, the underlying dependent interaction

distributions is also likely to differ.

D. Interaction Prediction Model

To model the interaction dynamics independent of the

application, we refer to interaction positions in screen coor-

dinates instead of digital objects. Due to the high resolution

of today’s displays, the interaction dynamics is not defined

for each pixel, but for n areal partitions on the screen. The

resulting function of the interaction dynamics is expressed
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Figure 5. P (IP localt+1|IP localt = (3, 3))

in a symmetric probability matrix A: Each row refers to

the screen partition (with partition id pid) the user inter-

acted in. The values of the row define the probability of

interacting in the corresponding partition in the next time

step: A(i, j) = P (pidt+1 = j|pidt = i). The interaction

transition matrix is used to calculate the probability of the

user interacting in a certain screen partition in the next time

step given the last detected interaction.

IV. CONCLUSION AND OUTLOOK

In this paper, we introduced a prediction-based locking

mechanism to overcome synchronization issues on net-based

shared workspaces that stem from network latency. We

showed in a user study that collisions occur if the user do

collaborate closely on a net-based shared workspace.

Our solution locks digital objects based on predicting the

next interaction of the remote users within the time of the

network latency. This prevents the data of the remote stations

to diverge. The prediction model is continuously adapted to

the user’s interaction behavior. An initial prediction model

is deduced from a user study on large interactive screens. It

shows that two sequencing user interactions do not necessar-

ily take place in the same screen region but tend to the mid

left region of the screen. Hence, the probability distribution

is not symmetric.

To further improve the quality of the looking mechanism,

the size of the locked screen area can be reduced and merged

automatically. If the algorithm detects multiple interactions

within one screen partition, the area is split up. If it detects

no interaction in adjacent partitions, the areas are merged

with respect to the corresponding interaction probability.

It is, moreover, reasonable to extend the interac-

tion prediction model to depend not only on the

last local but also on the last remote interaction

P (IP localt+1|IP localt, IP remotet). This is motivated

by turn taking: If the local and remote user work on the

same object, it is natural to work sequentially: One user is

listening, while the other explains what he is doing.
The threshold T for detecting a collision can be adapted,

too. If the number of detected collisions decreases, the

threshold T is increased to reduce the number of locked

objects. If the number of collisions increases, T is decreased

again.
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