437 research outputs found

    Hamiltonian chordal graphs are not cycle extendible

    Full text link
    In 1990, Hendry conjectured that every Hamiltonian chordal graph is cycle extendible; that is, the vertices of any non-Hamiltonian cycle are contained in a cycle of length one greater. We disprove this conjecture by constructing counterexamples on nn vertices for any n≥15n \geq 15. Furthermore, we show that there exist counterexamples where the ratio of the length of a non-extendible cycle to the total number of vertices can be made arbitrarily small. We then consider cycle extendibility in Hamiltonian chordal graphs where certain induced subgraphs are forbidden, notably PnP_n and the bull.Comment: Some results from Section 3 were incorrect and have been removed. To appear in SIAM Journal on Discrete Mathematic

    Cycles containing all vertices of maximum degree

    Get PDF
    For a graph G and an integer k, denote by Vk the set {v ε V(G) | d(v) ≥ k}. Veldman proved that if G is a 2-connected graph of order n with n ≤ 3k - 2 and |Vk| ≤ k, then G has a cycle containing all vertices of Vk. It is shown that the upper bound k on |Vk| is close to best possible in general. For the special case k = δ(G), it is conjectured that the condition |Vk| ≤ k can be omitted. Using a variation of Woodall's Hopping Lemma, the conjecture is proved under the additional condition that n ≤ 2δ(G) + δ(G) + 1. This result is an almost-generalization of Jackson's Theorem that every 2-connected k-regular graph of order n with n ≤ 3k is hamiltonian. An alternative proof of an extension of Jackson's Theorem is also presented

    Global cycle properties in graphs with large minimum clustering coefficient

    Full text link
    The clustering coefficient of a vertex in a graph is the proportion of neighbours of the vertex that are adjacent. The minimum clustering coefficient of a graph is the smallest clustering coefficient taken over all vertices. A complete structural characterization of those locally connected graphs, with minimum clustering coefficient 1/2 and maximum degree at most 6, that are fully cycle extendable is given in terms of strongly induced subgraphs with given attachment sets. Moreover, it is shown that all locally connected graphs with minimum clustering coefficient 1/2 and maximum degree at most 6 are weakly pancyclic, thereby proving Ryjacek's conjecture for this class of locally connected graphs.Comment: 16 pages, two figure
    • …
    corecore