105 research outputs found

    On a Camassa-Holm type equation with two dependent variables

    Full text link
    We consider a generalization of the Camassa Holm (CH) equation with two dependent variables, called CH2, introduced by Liu and Zhang. We briefly provide an alternative derivation of it based on the theory of Hamiltonian structures on (the dual of) a Lie Algebra. The Lie Algebra here involved is the same algebra underlying the NLS hierarchy. We study the structural properties of the CH2 hierarchy within the bihamiltonian theory of integrable PDEs, and provide its Lax representation. Then we explicitly discuss how to construct classes of solutions, both of peakon and of algebro-geometrical type. We finally sketch the construction of a class of singular solutions, defined by setting to zero one of the two dependent variables.Comment: 22 pages, 2 figures. A few typos correcte

    Real-valued algebro-geometric solutions of the two-component Camassa-Holm hierarchy

    Get PDF
    We provide a construction of the two-component Camassa-Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutions of the nnth equation of the stationary CH-2 hierarchy as the real nn-dimensional torus Tn\mathbb{T}^n. We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint singular Hamiltonian systems. In particular, we employ Weyl-Titchmarsh theory for singular (canonical) Hamiltonian systems. While we focus primarily on the case of stationary algebro-geometric CH-2 solutions, we note that the time-dependent case subordinates to the stationary one with respect to isospectral torus questions.Comment: 35 pages. arXiv admin note: substantial text overlap with arXiv:nlin/020802

    Classification of integrable hydrodynamic chains and generating functions of conservation laws

    Full text link
    New approach to classification of integrable hydrodynamic chains is established. Generating functions of conservation laws are classified by the method of hydrodynamic reductions. N parametric family of explicit hydrodynamic reductions allows to reconstruct corresponding hydrodynamic chains. Plenty new hydrodynamic chains are found

    Cnoidal Waves on Fermi-Pasta-Ulam Lattices

    Full text link
    We study a chain of infinitely many particles coupled by nonlinear springs, obeying the equations of motion [\ddot{q}_n = V'(q_{n+1}-q_n) - V'(q_n-q_{n-1})] with generic nearest-neighbour potential VV. We show that this chain carries exact spatially periodic travelling waves whose profile is asymptotic, in a small-amlitude long-wave regime, to the KdV cnoidal waves. The discrete waves have three interesting features: (1) being exact travelling waves they keep their shape for infinite time, rather than just up to a timescale of order wavelength−3^{-3} suggested by formal asymptotic analysis, (2) unlike solitary waves they carry a nonzero amount of energy per particle, (3) analogous behaviour of their KdV continuum counterparts suggests long-time stability properties under nonlinear interaction with each other. Connections with the Fermi-Pasta-Ulam recurrence phenomena are indicated. Proofs involve an adaptation of the renormalization approach of Friesecke and Pego (1999) to a periodic setting and the spectral theory of the periodic Schr\"odinger operator with KdV cnoidal wave potential.Comment: 25 pages, 3 figure
    • …
    corecore