2,136 research outputs found

    Equilibrium and dynamical properties of the ANNNI chain at the multiphase point

    Get PDF
    We study the equilibrium and dynamical properties of the ANNNI (axial next-nearest-neighbor Ising) chain at the multiphase point. An interesting property of the system is the macroscopic degeneracy of the ground state leading to finite zero-temperature entropy. In our equilibrium study we consider the effect of softening the spins. We show that the degeneracy of the ground state is lifted and there is a qualitative change in the low temperature behaviour of the system with a well defined low temperature peak of the specific heat that carries the thermodynamic ``weight'' of the ground state entropy. In our study of the dynamical properties, the stochastic Kawasaki dynamics is considered. The Fokker-Planck operator for the process corresponds to a quantum spin Hamiltonian similar to the Heisenberg ferromagnet but with constraints on allowed states. This leads to a number of differences in its properties which are obtained through exact numerical diagonalization, simulations and by obtaining various analytic bounds.Comment: 9 pages, RevTex, 6 figures (To appear in Phys. Rev. E

    Single-shot simulations of dynamics of quantum dark solitons

    Full text link
    Eigenstates of Bose particles with repulsive contact interactions in one-dimensional space with periodic boundary conditions can be found with the help of the Bethe ansatz. The type~II excitation spectrum identified by E. H. Lieb, reproduces the dispersion relation of dark solitons in the mean-field approach. The corresponding eigenstates possess translational symmetry which can be broken in measurements of positions of particles. We analyze emergence of single and double solitons in the course of the measurements and investigate dynamics of the system. In the weak interaction limit, the system follows the mean-field prediction for a short period of time. Long time evolution reveals many-body effects that are related to an increasing uncertainty of soliton positions. In the strong interaction regime particles behave like impenetrable bosons. Then, the probability densities in the configuration space become identical to the probabilities of non-interacting fermions but the wave-functions themselves remember the original Bose statistics. Especially, the phase flips that are key signatures of the solitons in the weak interaction limit, can be observed in the time evolution of the strongly interacting bosons.Comment: 11 pages, 9 figure

    Numerical approach to low-doping regime of the t-J model

    Full text link
    We develop an efficient numerical method for the description of a single-hole motion in the antiferromagnetic background. The method is free of finite-size effects and allows calculation of physical properties at an arbitrary wavevector. Methodical increase of the functional space leads to results that are valid in the thermodynamic limit. We found good agreement with cumulant expansion, exact- diagonalization approaches on finite lattices as well as self-consistent Born approximations. The method allows a straightforward addition of other inelastic degrees of freedom, such as lattice effects. Our results confirm the existence of a finite quasiparticle weight near the band minimum for a single hole and the existence of string-like peaks in the single-hole spectral function.Comment: 6 pages, 6 figures, accepted for publication in PR

    Quantum Monte Carlo in the Interaction Representation --- Application to a Spin-Peierls Model

    Full text link
    A quantum Monte Carlo algorithm is constructed starting from the standard perturbation expansion in the interaction representation. The resulting configuration space is strongly related to that of the Stochastic Series Expansion (SSE) method, which is based on a direct power series expansion of exp(-beta*H). Sampling procedures previously developed for the SSE method can therefore be used also in the interaction representation formulation. The new method is first tested on the S=1/2 Heisenberg chain. Then, as an application to a model of great current interest, a Heisenberg chain including phonon degrees of freedom is studied. Einstein phonons are coupled to the spins via a linear modulation of the nearest-neighbor exchange. The simulation algorithm is implemented in the phonon occupation number basis, without Hilbert space truncations, and is exact. Results are presented for the magnetic properties of the system in a wide temperature regime, including the T-->0 limit where the chain undergoes a spin-Peierls transition. Some aspects of the phonon dynamics are also discussed. The results suggest that the effects of dynamic phonons in spin-Peierls compounds such as GeCuO3 and NaV2O5 must be included in order to obtain a correct quantitative description of their magnetic properties, both above and below the dimerization temperature.Comment: 23 pages, Revtex, 11 PostScript figure

    Direct simulations of small multi-fermion systems

    Full text link
    I explore computer simulations of the dynamics of small multi-fermion lattice systems. The method is more general, but I concentrate on Hubbard type models where the fermions hop between a small number of connected sites. I use the natural mapping of fermion occupation numbers onto computer bits. Signs from fermion interchange are reduced to bit counting. The technique inherently requires computer resources growing exponentially with the system volume; so, it restricted to modestly small systems. Large volume results would require combining these techniques with further approximations, perhaps in a recursive renormalization group manner.Comment: 17 pages, 9 figures, revtex
    corecore