26 research outputs found

    Hamiltonian and self-adjoint control systems

    Get PDF
    This paper outlines results recently obtained in the problem of determining when an input-output map has a Hamiltonian realization. The results are obtained in terms of variations of the system trajectories, as in the solution of the Inverse Problem in Classical Mechanics. The variational and adjoint systems are introduced for any given nonlinear system, and self-adjointness defined. Under appropriate conditions self-adjointness characterizes Hamiltonian systems. A further characterization is given directly in terms of variations in the input and output trajectories, proving an earlier conjecture by the first author

    Geometry of Thermodynamic Processes

    Get PDF
    Since the 1970s contact geometry has been recognized as an appropriate framework for the geometric formulation of the state properties of thermodynamic systems, without, however, addressing the formulation of non-equilibrium thermodynamic processes. In Balian & Valentin (2001) it was shown how the symplectization of contact manifolds provides a new vantage point; enabling, among others, to switch between the energy and entropy representations of a thermodynamic system. In the present paper this is continued towards the global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian submanifold describing the state properties, which is overarching the locally defined metrics of Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold. The correspondence between objects in contact geometry and their homogeneous counterparts in symplectic geometry, as already largely present in the literature, appears to be elegant and effective. This culminates in the definition of port-thermodynamic systems, and the formulation of interconnection ports. The resulting geometric framework is illustrated on a number of simple examples, already indicating its potential for analysis and control.Comment: 23 page

    Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem

    Get PDF
    We develop a method for the stabilization of mechanical systems with symmetry based on the technique of controlled Lagrangians. The procedure involves making structured modifications to the Lagrangian for the uncontrolled system, thereby constructing the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system, where new terms in these equations are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. We use kinetic shaping to preserve symmetry and only stabilize systems module the symmetry group. The procedure is demonstrated for several underactuated balance problems, including the stabilization of an inverted planar pendulum on a cart moving on a line and an inverted spherical pendulum on a cart moving in the plane

    Controlled invariance for hamiltonian systems

    Get PDF
    A notion of controlled invariance is developed which is suited to Hamiltonian control systems. This is done by replacing the controlled invariantdistribution, as used for general nonlinear control systems, by the controlled invariantfunction group. It is shown how Lagrangian or coisotropic controlled invariant function groups can be made invariant by static, respectively dynamic, Hamiltonian feedback. This constitutes a first step in the development of a geometric control theory for Hamiltonian systems that explicitly uses the given structure

    Linear Hamiltonian behaviors and bilinear differential forms

    Get PDF
    We study linear Hamiltonian systems using bilinear and quadratic differential forms. Such a representation-free approach allows us to use the same concepts and techniques to deal with systems isolated from their environment and with systems subject to external influences and allows us to study systems described by higher-order differential equations, thus dispensing with the usual point of view in classical mechanics of considering first- and second-order differential equations only
    corecore