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Abstract. We study linear Hamiltonian systems using bilinear and quadratic differential forms.
Such a representation-free approach allows us to use the same concepts and techniques to deal with
systems isolated from their environment and with systems subject to external influences and allows
us to study systems described by higher-order differential equations, thus dispensing with the usual
point of view in classical mechanics of considering first- and second-order differential equations only.
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1. Introduction. This paper aims to give a unified treatment of linear Hamil-
tonian systems using the formalism of bilinear and quadratic differential forms in-
troduced in [24]. We consider systems with and without external influences, and
we deal with both cases using the same techniques and the same concepts. More-
over, we formulate concepts and study the properties of Hamiltonian systems in a
representation-free way, thus dispensing with the usual point of view in mechanics
and in physics (see, for example, [1]) of concentrating on first-order representations
in the (generalized) coordinates and the (generalized) momenta. Instead of postulat-
ing the existence of a function (the Lagrangian, or the Hamiltonian) on the basis of
physical considerations (conservation of energy, etc.) and deducing from such a func-
tion the equations of motion, we proceed by assuming that a set of linear differential
equations with constant coefficients describing the system is given, and we deduce the
Hamiltonian nature of the system from such equations, by proving the existence of
certain bilinear functionals of the variables of the system and of their derivatives sat-
isfying some additional property. Our approach is of a system-theoretic nature rather
than derived from the study of mechanics: as happens in optimal control theory for
linear systems, we consider the interplay of (quadratic and bilinear) functionals of the
system variables and of the equations of motion as the central object of study when
dealing with Hamiltonian systems.

In this paper we also reconcile our point of view with that of classical mechanics by
showing how to construct a “generalized Lagrangian” on the basis of the equations of
the system, in the sense that the trajectories of the system are stationary with respect
to such a quadratic functional of the variables of the system and their derivatives. In
this context, the concept of internal force also arises naturally from the equations
describing the system: in this paper we show that generalized internal forces can be
defined which depend on higher-order derivatives of the external variables and not
only first-order ones at most, as happens in classical mechanics.
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The works more closely connected with the approach proposed in this paper are
[8] and [7, 19]. The approach of [8] is devoted to examining the consequences of the
Hamiltonian symmetry of the transfer function on the possibility of realizing a lin-
ear system in some special form; the treatment is carried out in the framework of
polynomial models. In the present paper we obtain some of the results of [8] when
treating Hamiltonian systems with external influences. The work of [7, 19] (see also
[6, 12, 18, 20]) deals with nonlinear systems and consequently has a larger application
area than the one illustrated in the present paper. In some cases, most notably in
the study of external characterizations of (nonlinear) Hamiltonian systems, such an
approach provides results which indeed have a more general nature than some of those
presented in this article. However, we believe that the approach presented in this pa-
per, although applicable in its present form only to finite-dimensional linear systems,
is relevant for the following reasons. First, the simpler structure of linear systems and
the array of algebraic techniques available in the behavioral framework to deal with
them allow us to devise constructive methods based on polynomial algebra in order
to solve many of the problems arising when considering linear Hamiltonian systems,
for example, the computation of “conserved quantities,” of special representations,
etc. (an example of the technical difficulties involved in solving similar problems in
the nonlinear case is given in section III of [6]). Second, the representation-free ap-
proach that we pursue allows us to describe systems of a different nature using the
same formalism, independent of the domain of application. Such a feature of our ap-
proach is especially relevant in view of the potential application of our techniques in
the description of possibly infinite-dimensional nonmechanical systems, for example,
those arising in the theory of fields. Moreover, proceeding directly from the equations
of motion allows us to study Hamiltonianity also for complex systems (for example,
those resulting from the interconnection of many simple subsystems), for which the
identification of functionals representing the “conserved quantities” is not immediate;
this is of particular interest when considering the application of the results presented
in this paper to computer-assisted modeling and simulation.

The paper is organized as follows: in section 2 we review some notions regarding
linear differential systems and bilinear differential forms, which form the setting in
which we study linear Hamiltonian systems. In section 3 we define Hamiltonianity
for autonomous systems. In classical mechanics, a Hamiltonian system consists of the
trajectories which are stationary with respect to a Lagrangian function; in section 4
we show how such a point of view fits with our definition of Hamiltonianity, and we
define the notion of generalized Lagrangian. In section 5 we consider the notion of
internal forces, which we propose to see as latent variables arising naturally from the
equations describing an autonomous Hamiltonian system. The relationship between
internal forces and external variables in an autonomous Hamiltonian system forms the
basis for our definition of a controllable Hamiltonian system. In section 6 we discuss
our results and outline some directions for future research.

We give a few words on notation. The space of n-dimensional real, respectively,
complex, vectors is denoted by R

n, respectively, C
n, and the space of m × n real,

respectively, complex, matrices, by R
m×n, respectively, C

m×n. Whenever one of the
two dimensions is not specified, a bullet • is used so that, for example, C

•×n denotes
the set of complex matrices with n columns and an unspecified number of rows. In
order to enhance readability, when dealing with a vector space R

• whose elements
are commonly denoted with w, we use the notation R

w (note the typewriter font
type); similar considerations hold for matrices representing linear operators on such
spaces.
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Given two column vectors x and y, we denote with col(x, y) the vector obtained
by stacking x over y; a similar convention holds for the stacking of matrices with the
same number of columns. If A ∈ R

m×n, then AT ∈ R
n×m denotes its transpose. If Ai ∈

R
ki×ki , i = 1, . . . , m, then block diag(Ai)i=1,...,m denotes the (

∑m
i=1 ki) × (

∑m
i=1 ki)

matrix having the Ai’s on the main diagonal.
The ring of polynomials with real coefficients in the indeterminate ξ is denoted by

R[ξ]; the ring of two-variable polynomials with real coefficients in the indeterminates
ζ and η is denoted by R[ζ, η]. A polynomial p in the indeterminate ξ is called even if
p(ξ) = p(−ξ) and odd if p(−ξ) = −p(ξ). The space of all n×m polynomial matrices in
the indeterminate ξ is denoted by R

n×m[ξ], and that consisting of all n×m polynomial
matrices in the indeterminates ζ and η is denoted by R

n×m[ζ, η]. Given a matrix
R ∈ R

n×m[ξ], we define R∼(ξ) := RT (−ξ) ∈ R
m×n[ξ]. If R(ξ) has complex coefficients,

then R∼(ξ) denotes the matrix obtained from R by substituting −ξ in place of ξ,
transposing, and conjugating.

We denote with C∞(R,Rq) the set of infinitely often differentiable functions from
R to R

q, and we denote with D(R,Rq) the subset of C∞(R,Rq) consisting of compact
support functions.

Finally, if K is an n × n matrix, the bilinear form on R
n defined by (x1, x2) �→

xT
1 Kx2 is denoted by 〈x1, x2〉K . If K = KT , then it also induces a quadratic form

x → xTKx, which we denote with |x|2K .

2. Basics. In order to make the paper as self-contained as possible, we now il-
lustrate some basic notions regarding linear differential behaviors and bilinear and
quadratic differential forms; detailed expositions of such concepts can be found, re-
spectively, in [15] and in [24]. We conclude the section with a brief introduction to
Hamiltonian constant matrices, which are relevant in the discussion of state-space
representations of Hamiltonian behaviors.

2.1. Linear differential behaviors. A linear differential behavior is a linear
subspace B of C∞(R,Rw) consisting of all solutions w of a given system of linear
constant-coefficient differential equations. Such a set is represented as

R

(
d

dt

)
w = 0,(2.1)

where R ∈ R
•×w[ξ]; (2.1) is called a kernel representation of the behavior B := {w ∈

C∞(R,Rw) | w satisfies (2.1) }, and w is called the manifest or external variable of B.
The class of all such behaviors is denoted with Lw.

When modeling physical systems from first principles, we often introduce a num-
ber of latent (or auxiliary) variables � besides the manifest ones: thus latent variable
representations

R

(
d

dt

)
w = M

(
d

dt

)
�(2.2)

are obtained. Equation (2.2) describes the full behavior

Bf := {(w, �) ∈ C
∞(R,Rw+l) |(2.2) holds},

and we call the projection of Bf on the w variable, i.e.,

B := {w | ∃� such that (2.2) holds},
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the manifest behavior associated with (2.2). It can be shown that B can also be
described in kernel form, i.e., B = ker R′( d

dt ) for a suitable R′ ∈ R
•×w[ξ]. The

computation of such an R′ from R and M is called the elimination of the latent
variable �.

When the matrix R in (2.2) is the w-dimensional identity, we call

w = M

(
d

dt

)
�(2.3)

an image representation of B. A behavior can be represented by (2.3) if and only if
each of its kernel representations is associated with a polynomial matrix R ∈ R

•×w[ξ]
such that rank(R(λ)) is constant for all λ ∈ C, or equivalently, B is controllable in
the behavioral sense (see Chapter 5 of [15]). The latent variable � in (2.3) is called
observable from w if [w = M( d

dt )� = 0] =⇒ [� = 0]. It can be shown that this is the
case if and only if the matrix M(λ) has full column rank for all λ ∈ C.

An important class of behaviors is that of autonomous behaviors, which admit
kernel representations (2.1) in which the matrix R is w × w and nonsingular. Given
an autonomous behavior B ∈ Lw, the w× w matrices associated with any two kernel
representations of B have the same Smith form (see, for example, section 6.3.3 of
[10]). The diagonal elements in such a Smith form are nonzero polynomials called the
invariant polynomials of B; the product of such polynomials of B is denoted by χB

and is called the characteristic polynomial of B.
By permuting the components of w with a permutation matrix Π ∈ R

w×w if nec-
essary, we can write Πw = col(u, y) with y having rank(R) components and u having
w− rank(R) components, so that B admits the representation P ( d

dt )y = Q( d
dt )u, with

P square and nonsingular. We call such a partition of the external variables of B an
input/output (i/o) partition, u the input variable, y the output variable, and the
rational matrix P−1Q the transfer function associated with the given i/o partition.
Observe that in general many choices are possible for the permutation matrix Π above:
the i/o partition is not unique. Observe also that P−1Q is not necessarily a matrix
of proper rational functions; however, among all i/o partitions for B, there exists at
least one whose corresponding transfer function is proper.

The number of input variables is an invariant denoted with m(B); evidently, the
number p(B) := w−m(B) of output variables is also an invariant. If B is autonomous,
it has no input variables; in other words, m(B) = 0, or equivalently p(B) = w.
If B is controllable, then it admits an observable image representation (2.3) with
M ∈ R

w×l[ξ]; an i/o partition then corresponds to a partition of M as M = col(U, Y )
with U ∈ R

l×l[ξ] nonsingular; note that m(B) = l, the dimension of �. In such a case
the transfer function from u to y is the matrix of rational functions G = Y U−1.

In this paper we also use the concept of state and of state representation (see
[16] for a thorough discussion). A latent variable � is a state variable for B if and
only if B admits a representation (2.2) of first order in � and zeroth order in w:
E d�

dt + F� + Gw = 0. Such a representation is called a state representation of B.
The minimal number of state variables that can be used in order to represent B in
state-space form is an invariant called the McMillan degree of B and is denoted n(B).
By combining the notion of state with that of inputs and outputs we arrive at the
input/state/output representation (i/s/o) d

dtx = Ax+Bu, y = Cx+Du, w = col(u, y).

2.2. Bilinear and quadratic differential forms. In modeling and control
problems it is often necessary to study certain functionals of the system variables and
their derivatives; when considering linear systems, such functionals are quadratic.
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In [24] the parametrization of such functionals using two-variable polynomial matri-
ces has been studied in detail, resulting in the definition of bilinear and quadratic
differential form and in the development of a calculus with applications in stability
theory, optimal and H∞-control, and dissipativity theory. Two-variable polynomials
and their algebraic properties have been used before in systems theory, for example,
by Kalman [11] and Willems and Fuhrmann [22] in the context of stability analysis.
We also refer to the pioneering work of Brockett [2] on path independence of integrals
of quadratic functionals in the system variables and their derivatives, which prefigures
some of the results obtained in [24]. In this section we review those definitions and
results of the framework developed in [24] which are used in the rest of this paper.

First, some words about bilinear forms on abstract vector spaces. A bilinear
form L on a vector space V over R is a mapping L : V × V → R that is linear in
each of its arguments separately. We sometimes denote a bilinear form as L|

V
in

order to emphasize its domain. The rank of a bilinear form L|
V

equals the number of
independent linear functionals L(·, v), where v ranges over V. A bilinear form L|

V
is

called nondegenerate if for all v ∈ V we have that L(·, v) = 0 is equivalent with v = 0,
i.e., [L(V, v) = 0] ⇔ [v = 0]. The bilinear form L on V is called skew-symmetric if
for all v1, v2 ∈ V we have L(v1, v2) = −L(v2, v1). A symplectic space is a pair (V,L),
where V is a vector space over R and L is a nondegenerate, skew-symmetric, bilinear
form on V; in such a case L is called a symplectic form on V. If V is a finite-dimensional
space on R, then nondegenerate symplectic forms are in one-one correspondence with
nonsingular skew-symmetric matrices in the sense that for every symplectic form L
there exists a nonsingular K ∈ R

n×n with KT = −K such that L(x, y) = 〈x, y〉K , and
conversely, every such K defines a symplectic form on V. Obviously, such K exists
only if n is even.

Next, we examine bilinear differential forms. Let Φ ∈ R
w1×w2 [ζ, η]; then Φ(ζ, η) =∑N

h,k=0 Φh,kζ
hηk, where Φh,k ∈ R

w1×w2 and N is a nonnegative integer. The two-
variable polynomial matrix Φ induces the bilinear functional acting on w1-, respec-
tively, w2-dimensional infinitely differentiable trajectories, defined as LΦ(w1, w2) =∑N

h,k=0(
dhw1

dth
)TΦh,k

dkw2

dtk
. Such a functional is called a bilinear differential form

(BDF). LΦ is skew-symmetric, meaning LΦ(w1, w2) = −LΦ(w2, w1) for all w1, w2,
if and only if Φ is a skew-symmetric two-variable polynomial matrix, i.e., if w1 = w2
and Φ(ζ, η) = −ΦT (η, ζ).

A two-variable polynomial matrix Φ(ζ, η) is called symmetric if w1 = w2 = w and
Φ(ζ, η) = ΦT (η, ζ). In such a case, Φ induces also a quadratic functional acting on
w-dimensional infinitely smooth trajectories as QΦ(w) := LΦ(w,w). We will call QΦ

the quadratic differential form (QDF) associated with Φ.
With every Φ ∈ R

w1×w2 [ζ, η] we associate its coefficient matrix Φ̃, which is defined
as the infinite matrix Φ̃ := (Φi,j)i,j=0,.... Observe that although Φ̃ is infinite, only a
finite number of its entries are nonzero. Note that Φ is skew-symmetric if and only if
Φ̃T = −Φ̃; also, Φ is symmetric if and only if Φ̃T = Φ̃.

The association of two-variable polynomial matrices with BDFs and QDFs allows
us to develop a calculus that has applications in stability theory, optimal control,
and H∞-control. We restrict our attention only to those concepts that are used in
this paper. One of them is the map ∂ : R

w×w[ζ, η] −→ R
w×w[ξ] defined by ∂Φ(ξ) :=

Φ(−ξ, ξ). Observe that if Φ ∈ R
w×w[ζ, η] is symmetric, then ∂Φ is para-Hermitian,

i.e., ∂Φ = (∂Φ)∼, and if Φ is skew-symmetric, then ∂Φ is skew para-Hermitian, i.e.,
(∂Φ)∼ = −∂Φ. Given a BDF LΨ we define its derivative as the BDF LΦ defined by
LΦ(w1, w2) := d

dt (LΨ(w1, w2)) for all w1, w2. In terms of the two-variable polynomial
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matrices associated with the BDFs, the relationship between a BDF and its derivative
is expressed as Φ(ζ, η) = (ζ + η)Ψ(ζ, η). The notion of a derivative of a QDF is
analogous and algebraically characterized in the same way; we will not repeat its
definition here.

We now discuss the notions of rank and of nondegeneracy of BDFs. Let Φ ∈
R
w×w[ζ, η] and B ∈ Lw. Then the BDF LΦ induces a bilinear form on the real vector

space B by assigning to (v, w) ∈ B×B the real number LΦ(v, w)(0). We denote this
bilinear form by LΦ|B. We can hence speak about the rank and the nondegeneracy
of this induced bilinear form. In particular, LΦ|B is nondegenerate if for all w ∈ B

we have [LΦ(B, w)(0) = 0] ⇔ [w = 0]. If B is autonomous, then the following result,
whose proof is easy and is left to the reader, holds.

Proposition 2.1. Let Φ ∈ R
w×w[ζ, η], and let B ∈ Lw be autonomous. Let d

dtx =

Ax, w = Cx be a state representation of B, with full behavior Bf = {(x,w)| ddtx = Ax,
w = Cx}. Define N∞ := col(CAi)i=0,...; note that it has an infinite number of

rows. Then LΦ(w1, w2) = xT
1 N

T
∞Φ̃N∞x2 ∀(x1, w1), (x2, w2) ∈ Bf . Consequently,

rank (LΦ|B) = rank (NT
∞Φ̃N∞).

We can now characterize nondegeneracy in terms of rank.
Proposition 2.2. Let Φ ∈ R

w×w[ζ, η], and let B ∈ Lw be autonomous, with
McMillan degree n(B). Then LΦ|B is nondegenerate if and only if rank(LΦ|B) ≥
n(B).

Proof. Let d
dtx = Ax, w = Cx be a minimal state representation of B. Then

NT
∞Φ̃N∞ has size n(B) × n(B). We now prove that LΦ|B is nondegenerate if and

only if NT
∞Φ̃N∞ is nonsingular. This will prove the claim.

(Only if) Assume NT
∞Φ̃N∞x0 = 0. Define w by w(t) = CeAtx0. For an arbitrary

w′ = CeAtx′
0, it holds that LΦ(w′, w)(0) = x′T

0 NT
∞Φ̃N∞x0 = 0; by the nondegeneracy

of LΦ, we conclude that w = 0. Minimality of d
dtx = Ax, w = Cx implies x0 = 0.

(If) Let w = CeAtx0 ∈ B, and assume LΦ(w′, w)(0) = 0 for all w′ = CeAtx′
0 ∈ B.

Then clearly x′T
0 NT

∞Φ̃N∞x0 = 0 for all x′
0, so NT

∞Φ̃N∞x0 = 0. Since NT
∞Φ̃N∞ is

nonsingular, this implies x0 = 0 and consequently w = 0.

2.3. Hamiltonian matrices. Given a symplectic form 〈x, y〉K on R
n, a linear

map A : R
n → R

n (or matrix A ∈ R
n×n) is called Hamiltonian if 〈Ax, y〉K+〈x,Ay〉K =

0 for all x, y ∈ R
n; equivalently ATK+KA = 0. For the purposes of this paper, we are

especially interested in the invariant polynomials of ξI −A, where A is Hamiltonian;
we call them the invariant polynomials of A. The relevant result is the following.

Proposition 2.3. Let A ∈ R
n×n be Hamiltonian. Then its invariant polyno-

mials are either even or odd, and the odd ones can be divided into pairs, so that the
multiplicity of zero as a root is the same for the polynomials of each pair.

Proof. In order to prove our statement we use the results of [4]. Such results
make use of the concept of elementary divisors of A, i.e., the irreducible factors of
the invariant polynomials of ξI − A, which are in one-one correspondence with the
diagonal blocks appearing in the Jordan form of A (see, for example, section VII.7
of [9]).

In Theorem 2.2 of [4] it is proved that if A is Hamiltonian, then its elementary
divisors qi ∈ C[ξ] are either even polynomials: qi(ξ) = (ξ2 + a2)k, with a ∈ R; or,
if they are not even, then they occur in pairs: as well as qi(ξ) = (ξ − λ)k, λ ∈ C,
also q∼i (ξ) = (−ξ − λ)k appears. Observe that if λ = 0, then such paired elementary
divisors are necessarily ±ξ2k+1, and if λ �= 0, then they are coprime with each other.

Conclude from these remarks that ξI −A is Smith equivalent to a diagonal form,
where on the diagonal appear either even polynomials, or pairs of polynomials of the
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form ξ2k+1. We now use the argument of Theorem 2 of [5] in order to prove the claim.
Let 1 ≤ k ≤ n, and consider the set Mk consisting of all k × k minors of ξI − A;
observe that Mk contains only even or odd polynomials. Now consider the greatest
common divisor ∆k of the polynomials in Mk, and observe that for every m ∈ Mk

there exists m′ ∈ R[ξ] such that m = ∆km
′; moreover, since m is either even or odd, it

holds that m∼ = ±m = ∆∼
k m

′∼. It follows that ∆∼
k divides every polynomial in Mk.

Consequently ∆∼
k divides ∆k, and by symmetry also the converse holds. It follows

that ∆k = ±∆∼
k . Since the invariant polynomials are obtained dividing ∆k by ∆k−1

(with ∆0 := 1), it follows that the invariant polynomials of ξI −A are either even or
odd.

In order to prove the claim regarding the paired odd polynomials, assume by
contradiction that there exists a pair of odd invariant polynomials of A for which zero
is a root with multiplicity 2k1+1 and 2k2+1, respectively, k1 �= k2, and which cannot
be paired otherwise. Observe that ξ2k1+1 and ξ2k2+1 are elementary divisors of A.
Conclude that in the Jordan form of A there are two blocks associated with zero, of
dimension 2k1 + 1 and 2k2 + 1, respectively, which cannot be paired otherwise. This,
however, is in contradiction with the results of [4] on the elementary divisors. This
concludes the proof.

3. Autonomous Hamiltonian systems. The definition of an autonomous
Hamiltonian system is as follows.

Definition 3.1. Let B ∈ Lw be autonomous. B is called Hamiltonian if there
exists a bilinear differential form LΨ, such that

(i) d
dtLΨ(w1, w2) = 0 for all w1, w2 ∈ B;

(ii) LΨ is skew-symmetric;
(iii) LΨ|B is nondegenerate.
In Definition 3.1 no assumption on the number w of external variables of B is

made. This point of view is in contrast with the usual definition of an autonomous
Hamiltonian system, in which a symplectic structure on the space of the external
variables (and consequently, an even number of such variables) is assumed. We believe
that in order to investigate linear, finite-dimensional Hamiltonian systems, Definition
3.1 is a natural starting point, more so than the classical one in mechanics, as argued
in the following examples.

Example 3.2. Consider a spring-mass system without friction, with behavior B

represented by the equation m d2

dt2w where w is the displacement from the equilibrium
position. The BDF LΨ induced by Ψ(ζ, η) = m(ζ − η) is skew-symmetric. In fact,
LΨ(w1, w2) = m( d

dtw1)w2 −m( d
dtw2)w1. It is easily seen that d

dtLΨ(w1, w2) = 0 for
all w1, w2 ∈ B. Also

LΨ(w1, w2)(0) =

(
w1(0)
d
dtw1(0)

)T (
0 −m
m 0

)(
w2(0)
d
dtw2(0)

)
,

which clearly defines a nondegenerate bilinear form on B. It follows that this spring-
mass system with only one external variable is Hamiltonian according to Definition
3.1. It is difficult to understand why, in order to study the Hamiltonianity of such a
system from the point of view of classical mechanics, one should first transform the
natural second-order differential equation description into a first-order representation
in which the position and the momentum of the mass are the external variables and
then study the symplectic structure of the resulting state-space system.

The previous example illustrates but one situation in which a representation-free
definition of Hamiltonianity appears to be more natural than the classical one. The
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argument for a definition of Hamiltonianity independent of the particular representa-
tion at hand becomes even stronger if one realizes that very often a dynamical system
is described by a set of higher-order differential equations, obtained, for example, after
elimination of auxiliary variables. The following example illustrates this point.

Example 3.3. Consider two masses m1 and m2 attached to springs with constants
k1 and k2. The first mass is connected to the second one via the first spring, and the
second mass is connected to a “wall” with the second spring. Denote by w1 and w2

the positions of the masses. Then we can write down the equation of the system as

m1
d2w1

dt2 + k1w1 − k1w2 = 0, −k1w1 + m2
d2w2

dt2 + (k1 + k2)w2 = 0. Eliminate w2 from
the equations and take the position w1 of the first mass as our external variable w.
The behavior B of w is represented by

m1m2
d4

dt4
w + (k1m1 + k2m1 + k1m2)

d2

dt2
w + k1k2w = 0.

In order to simplify the notation, define r0 := k1k2, r2 := k1m1 + k2m1 + k1m2, and
r4 := m1m2, so that the equation describing w can be rewritten as r( d

dt )w = 0, where
r(ξ) := r0 + r2ξ

2 + r4ξ
4. Define the skew-symmetric polynomial Ψ(ζ, η) by Ψ(ζ, η) =

r2(ζ−η)+ r4(ζ
3 −η3)+ r4(ζη

2 − ζ2η). Observe that (ζ +η)Ψ(ζ, η) = r(ζ)− r(η), and
consequently d

dtLΨ(v, w) = (r( d
dt )v)

Tw − vT (r( d
dt )w) = 0 for all v, w ∈ B. Moreover,

Ψ(η, ζ) = −Ψ(ζ, η), implying that the BDF LΨ(v, w) is skew-symmetric. Finally,
since the coefficient matrix Ψ̃ of Ψ(ζ, η) is nonsingular, LΨ(v, w)(0) clearly defines a
nondegenerate bilinear form on B. Hence the behavior B is a Hamiltonian system in
the sense of Definition 3.1.

The following theorem gives conditions under which a given autonomous linear
differential behavior is Hamiltonian.

Theorem 3.4. Let B ∈ Lw be autonomous. The following conditions are equiv-
alent:

(1) B is Hamiltonian;
(2) every invariant polynomial of B is either even or odd, and the odd invariant

polynomials can be divided into pairs so that the multiplicity of zero as a root
is the same for the polynomials of each pair;

(3) there exists a minimal state representation d
dtx = Ax, w = Cx of B, and a

symplectic form 〈·, ·〉K on the state space R
n(B) such that A is a Hamiltonian

matrix;
(4) for any minimal state representation d

dtx = Ax, w = Cx of B there exists a

symplectic form 〈·, ·〉K on the state space R
n(B) such that A is a Hamiltonian

matrix.
Proof. We prove (1) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1).
((1) ⇒ (4)) Let LΨ satisfy Definition 3.1. Let d

dtx = Ax, w = Cx be a minimal

state representation of B. From Proposition 2.1 we have that for KΨ := NT
∞Ψ̃N∞ ∈

R
n(B)×n(B) we have LΨ(w1, w2) = xT

1 KΨx2 for all (wi, xi) (i = 1, 2) satisfying the sys-
tem equations and, moreover, rank(LΨ|B) = rank(KΨ). Since LΨ|B is nondegenerate,
it follows from Proposition 2.2 that rank(KΨ) = n(B). Consequently KΨ is nonsingu-
lar. Conclude from d

dtLΨ(w1, w2) = 0 for all w1, w2 ∈ B that xT
1 (ATKΨ+KΨA)x2 = 0

for all xi such that d
dtxi = Axi, i = 1, 2. This implies ATKΨ + KΨA = 0.

((4) ⇒ (3)) is trivial.
((3) ⇒ (2)) Conclude from Proposition 2.3 that the invariant polynomials of A are

either even or odd and that the odd ones come in pairs and have zero as a root with
the same multiplicity. Now let R ∈ R

•×w[ξ] be such that B = ker R( d
dt ). Since B is
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autonomous, R has full column rank. Let λi, i = 1, . . . , w, be the invariant polynomials
of R. Let U and V be the unimodular matrices such that R = Ucol(Λ, 0)V , with
Λ := diag(λi)i=1,...,w, the Smith form of R. Then B is alternatively represented by
w = V ( d

dt )
−1w′, 0 = Λ( d

dt )w
′. We now construct a minimal state representation of

B. For i = 1, . . . , w, define Ac,i to be the companion matrix associated with the ith
invariant polynomial; also, let Ci be the first vector of the canonical basis of R

deg(λi).
Define Â := block diag(Ac,i)i=1,...,w, Ĉ := block diag(Ci)i=1,...,w. Then d

dtx = Âx,

w′ = Ĉx is a minimal state representation of ker Λ( d
dt ). In order to come up with

a minimal state representation of B, let V −1(ξ) = V0 + V1ξ + · · · + VNξN ; then it
is easy to verify that d

dtx = Âx, w = (V0Ĉ + V1ĈÂ + · · · + VN ĈÂN−1)x is such

a representation. Observe also that ξI − Â has the same invariant polynomials of
ξI − A, since d

dtx = Ax, w = Cx is another minimal state-space representation of B

(see Lemma 6.3-19 of [10]). This concludes the proof of ((3) ⇒ (2)).
((2) ⇒ (1)) We first derive a special representation of B. Let B = kerR( d

dt ) be a
minimal kernel representation of B, and let R = U∆V be a Smith decomposition of
R, with ∆ the diagonal matrix of the invariant polynomials. Denote the even invariant
polynomials of B with λi, where i = 1, . . . , e. We denote the odd, paired, invariant
polynomials with µi, i = 1, . . . , w − e (observe that w − e is even). Now reorder if
necessary the invariant polynomials so that the first e diagonal entries of ∆ are the λi

and the last w−e the µi. From the division property of the invariant polynomials and
from the pairing property of the odd invariant polynomials, it follows that we can write
µ2i+1(ξ) = ξπi(ξ), µ2i+2(ξ) = ξπi(ξ)gi(ξ)gi(−ξ) with πi even and gi and g∼i coprime;
in other words, g(0) �= 0. (Observe that gi in general has complex coefficients, and
consequently in the following it may be necessary to work with polynomial matrices
with complex coefficients.)

From these considerations it follows that each 2×2 submatrix diag(µ2i+1, µ2i+2),
i = 0, . . . , w−e

2 − 1, is Smith-equivalent to

∆′
i(ξ) =

(
0 −ξπi(ξ)gi(−ξ)

ξπi(ξ)gi(ξ) 0

)
;

in other words, there exist unimodular matrices Ti and Si ∈ C
2×2[ξ] such that ∆′

i =
Tidiag(µ2i+1, µ2i+2)Si. Now define

T = diag(Ir, T1, . . . , T w−e
2

)

and

S = diag(Ir, S1, . . . , S w−e
2

),

and observe that T∆S = diag(Λ,∆′
1, . . . ,∆

′
w−e
2

) =: ∆̂, where Λ := diag(λ1, . . . , λe).

Conclude that (S−1V )∼TU−1R = (S−1V )∼∆̂S−1V =: R′ ∈ R
w×w[ξ] is another kernel

representation of B satisfying R′ = R′∼. It is such a representation that we use in
order to come up with a BDF as in Definition 3.1.

Consider the unimodular transformation of the external variables represented by
w′ := (S−1V )( d

dt )w, and observe that the ith component of w′, i = 1, . . . , e, satisfies

λi(
d
dt )w

′
i = 0, while the remaining components satisfy ∆′

i(
d
dt )col(w′

i, w
′
i+1) = 0, i =

0, . . . , w−e
2 − 1. We proceed to construct a skew-symmetric BDF LΨi acting on the

ith component w′
i and satisfying Definition 3.1. From such BDFs we will construct a

BDF for B with the right properties.
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We begin by computing such a BDF for the case of even invariant polynomials.
Since λi − λ∼

i = 0, it follows from Theorem 3.1 of [24] that there exists Ψi ∈ R[ζ, η]
such that (ζ + η)Ψi(ζ, η) = λi(ζ) − λi(η). Observe that Ψi(ζ, η) is skew-symmetric
and moreover, d

dtLΨi(w1, w2) = 0 for all w1, w2 ∈ ker λi(
d
dt ). We now prove that

LΨi
is nondegenerate. Write λi(ξ) = λi0 + λi2ξ

2 + · · ·+ λi,2ni
ξ2ni . It is easy to verify

that the coefficient matrix Ψ̃i of Ψ(ζ, η) is a 2ni × 2ni left-upper-triangular matrix
with ±λi,2ni on the main antidiagonal; as a consequence, the bilinear differential form
LΨi

|ker(λi(
d
dt )) is nondegenerate. This settles the case of even invariant polynomials.

We now examine the case of paired odd invariant polynomials. Observe first that
since πi is even, the two-variable polynomial ζπi(ζ)gi(ζ) + ηπi(η)gi(−η) is divisible
by ζ + η. Now define the skew-symmetric two-variable polynomial matrix Ψi(ζ, η) ∈
C

2×2[ζ, η] as

Ψi(ζ, η) :=

(
0 ζπi(ζ)gi(ζ)+ηπi(η)gi(−η)

ζ+η

− ζπi(ζ)gi(−ζ)+ηπi(η)gi(η)
ζ+η 0

)
.

We observe that d
dtLΨi

(col(w′
i, w

′
i+1), col(w̄′

i, w̄
′
i+1)) = 0 for each pair col(w′

i, w
′
i+1),

col(w̄′
i, w̄

′
i+1) of trajectories in ker ∆′

i(
d
dt ). We now prove that LΨi |ker∆′

i
( d
dt ) is nonde-

generate.
Let deg(πi) = 2Ki, deg(gi) = Li. It is a matter of straightforward verification

to prove that the coefficients of the terms ζkηLi+2Ki−k, k = 0, . . . , Li + 2Ki, in
ζπi(ζ)gi(ζ)+ηπi(η)gi(−η)

ζ+η are equal to gi,Li
πi,2Ki �= 0. It follows that the coefficient

matrix Ψ̃i is a block-left-upper-triangular matrix with on the diagonal 2× 2 blocks of
the form

(−1)k
(

0 gi,Li
πi,2Ki

−gi,Li
πi,2Ki

)
.

We conclude from this that Ψ̃i is nonsingular, and consequently the bilinear form
LΨi |ker∆′

i
( d
dt ) is nondegenerate. This settles the case of paired odd invariant polyno-

mials.
In order to complete the proof of the claim (2) ⇒ (1), assume Ψi(ζ, η) has been

constructed as described above; now define

Ψ(ζ, η) := (S−1V )(ζ)Tdiag(Ψi(ζ, η))(S
−1V )(η) ∈ R

q×q[ζ, η],

where S, V are the unimodular matrix involved in obtaining the special decomposition
of R′. (Observe that if some Ψi(ζ, η) has complex coefficients, then transposition
and complex conjugation are required.) Ψ(ζ, η) induces a skew-symmetric BDF LΨ

whose derivative is zero along B. The nondegeneracy of LΨ|B follows immediately
from the nondegeneracy of the forms LΨi

|kerλi(
d
dt ) and LΨi |ker∆′

i
( d
dt ). This concludes

the proof.

4. Hamiltonian systems and the Euler–Lagrange equations. In section 3
we introduced the notion of Hamiltonianity on the basis of the interplay of a skew-
symmetric BDF with the dynamics of the system, without reference to the notion of
Lagrangian as occurs in classical mechanics. In this section we reconcile the classical
point of view with our standpoint.

We begin by introducing the notion of stationarity of a trajectory with respect
to a QDF. Let Φ ∈ R

w×w[ζ, η] be symmetric and consider the corresponding QDF



LINEAR HAMILTONIAN BEHAVIORS AND BDFs 779

QΦ(w) on C∞(R,Rw). For a given w we define the cost degradation of adding the
compact-support function δ ∈ D(R,Rw) to w as

Jw(δ) :=

∫ +∞

−∞
(QΦ(w + δ) −QΦ(w))dt.

The cost degradation equals Jw(δ) =
∫ +∞
−∞ QΦ(δ)dt + 2

∫ +∞
−∞ LΦ(w, δ)dt, and we call

the second integral on the right of the equality sign the variation associated with w.
It defines a linear functional which associates with every δ ∈ D(R,Rw) a real number

2
∫ +∞
−∞ LΦ(w, δ)dt. We call w a stationary trajectory of QΦ if the variation associated

with w is the zero functional. The following proposition establishes a representation
of all stationary trajectories of given QDF QΦ. Recall that, for a given two-variable
polynomial matrix Φ(ζ, η), ∂Φ(ξ) is defined as the one-variable polynomial matrix
Φ(−ξ, ξ).

Proposition 4.1. Let Φ(ζ, η) ∈ R
w×w[ζ, η] be symmetric. Then w ∈ C∞(R,Rw)

is a stationary trajectory of the QDF QΦ if and only if w satisfies the differential
equation

∂Φ

(
d

dt

)
w = 0.(4.1)

Proof. Factor Φ(ζ, η) = MT (ζ)ΣM(η), with Σ a nonsingular signature matrix,
and M(ξ) = M0 + M1ξ + M2ξ

2 + · · · + MLξ
L (see section 3 of [24]). Integrating by

parts on δ ∈ D(R,Rw), the variation
∫ +∞
−∞ (M( d

dt )w)TΣM( d
dt )δdt is seen to be equal

to

L∑
k=1

L∑
j=k

(−1)k−1δ(j−k)MT
j Σ

(
M

(
d

dt

)
w

)(k−1) ∣∣∣∣
+∞

−∞

+

∫ +∞

−∞
δT

(
M

(
− d

dt

)T

ΣM

(
d

dt

)
w

)
dt.

Such a quantity is zero if and only if M(− d
dt )

TΣM( d
dt )w = 0; equivalently,

∂Φ( d
dt )w = 0.
From the classical theory of calculus of variations it is well known that the station-

ary trajectories for a given functional can be characterized in terms of the so-called
higher-order Euler equations, often called the Euler–Poisson equations. If the func-
tional is given by a QDF QΦ, then (4.1) can indeed be interpreted as a classical
Euler–Poisson equation. In order to verify this, let Φ̃eff := (Φk,�)k,�=0,...,L. Now
observe that QΦ(w) can be written as F (w,w(1), w(2), . . . , w(L)), with the functional
F : R

w × R
w × · · · × R

w → R defined by

F (w0, w1, w2, . . . , wL) := col(w0, w1, w2, . . . , wL)T Φ̃eff col(w0, w1, w2, . . . , wL).

In terms of this functional F , the stationary trajectories w are the solutions of the
Euler–Poisson equation

(
∂F

∂w0
− d

dt

∂F

∂w1
+

d2

dt2
∂F

∂w2
− · · · + (−1)L

dL

dtL
∂F

∂wL

)
(w(0), . . . , w(L)) = 0.(4.2)
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It is a matter of straightforward computation to see that the equations given by (4.1)
and (4.2) indeed coincide. Henceforth we will, for a given QDF QΦ, refer to the
differential equation (4.1) as the Euler–Poisson equation associated with QΦ.

According to the principle of least action, the motions that are possible in a me-
chanical system can be obtained as the stationary trajectories of the Lagrangian, the
difference between the kinetic and potential energy of the system, which is in general
represented as a function of displacement and velocity. Accordingly, the corresponding
Euler–Poisson equation is a system of second-order differential equations, called the
Euler–Lagrange equations associated with the mechanical system. Thus, the possible
motions in a mechanical system form a behavior represented by the Euler–Lagrange
equations. We now study the converse problem (called the “inverse problem of the
calculus of variations”; see [17]): under which conditions does a linear differential be-
havior B (typically described by a system of higher-order linear differential equations)
consist of the stationary trajectories with respect to some functional interpretable as
a Lagrangian (i.e., a functional that represents the difference between kinetic and po-
tential energy in a suitable sense), and how does one construct such a functional on
the basis of the equations describing B? It turns out that under mild assumptions,
this is the case if and only if B is a Hamiltonian system. This leads us to define the
notion of generalized position and generalized Lagrangian and to address the issue of
the existence of second-order latent variable representations of Hamiltonian behaviors.
See also [7] and [6], where the inverse problem is considered for nonlinear i/o systems,
and a characterization of Hamiltonian systems is given in terms of the properties of
the i/o differential equations describing them.

Theorem 4.2. Let B ∈ Lw be autonomous, and assume that χB, the character-
istic polynomial of B, has no root in zero, χB(0) �= 0. Then the following statements
are equivalent:

(1) B is Hamiltonian.
(2) n(B) is even, and there exists a full column rank matrix P (ξ) ∈ R

q×w[ξ], and
nonsingular matrices M = MT ,K = KT ∈ R

q×q, with q := n(B)/2, such
that B is equal to the space of all stationary trajectories with respect to the
QDF

QL(w) =

∣∣∣∣ ddtP
(

d

dt

)
w

∣∣∣∣
2

M

−
∣∣∣∣P

(
d

dt

)
w

∣∣∣∣
2

K

;

equivalently, B = {w ∈ C∞(R,Rw) | ∂L( d
dt )w = 0}, with L(ζ, η) defined by

L(ζ, η) := P (ζ)T (ζηM −K)P (η).(4.3)

Furthermore, if any of these conditions holds, then P , M , and K satisfying the con-
ditions in (2). can be chosen in such a way that in addition

d

dt
QH(w) = 0 for all w ∈ B,(4.4)

where QH(w) := | ddtP ( d
dt )w|2M + |P ( d

dt )w|2K .
Proof. ((1) ⇒ (2)) Since B is Hamiltonian and χB(0) �= 0, B has only even in-

variant polynomials. We reduce to the scalar case by use of the Smith form. Consider
a minimal representation of the behavior B as B = kerR( d

dt ), and let R = U∆V be
the Smith decomposition of R, with ∆ being a diagonal matrix. Define the behavior
B′ := V ( d

dt )B with manifest variable w′, and observe that B′ = ker ∆( d
dt ). We now

examine each of the behaviors B′
i := ker λi(

d
dt ), i = 1, . . . , w, one at a time.
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Let λi(ξ) := λi0 +λi2ξ
2 + · · ·+λi,2Li

ξ2Li , λi,2Li
�= 0 . Consider the following two

matrices:

Mi :=

⎛
⎜⎜⎜⎜⎜⎝

λi,2 λi,4 λi,6 · · · λi,2Li

λi,4 λi,6 λi,8 . . . 0
...

...
... . . .

...
λi,2Li−2 λi,2Li

0 · · · 0
λi,2Li 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠(4.5)

and

Ki :=

⎛
⎜⎜⎜⎜⎜⎝

λi,0 0 0 · · · 0
0 −λi,4 −λi,6 . . . −λi,2Li

...
...

...
...

0 −λi,2Li−2 −λi,2Li · · · 0
0 −λi,2Li

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ .(4.6)

It is immediate to see that Mi is nonsingular; the nonsingularity of Ki follows from
λi,2Li

�= 0 and the fact that λi,0 �= 0, since χB(0) �= 0. Let Ei(ξ) := col(1, ξ2, . . . , ξ2Li−2)
and ei := col(1, 0, . . . , 0) ∈ R

Li×1. Then the following equation holds:

(Miξ
2 + Ki)Ei(ξ) = λi(ξ)ei.(4.7)

This implies ET
i (−ξ)(Miξ

2 + Ki)Ei(ξ) = λi(ξ). Define E(ξ) := block diag(Ei(ξ)),
M = block diag(Mi), and K = block diag(Ki); then ∆(ξ) = ET (−ξ)((Mξ2+K)E(ξ).

Finally, let P (ξ) := E(ξ)V (ξ). Since B′ = ker ∆( d
dt ), also B = ker PT (− d

dt )(M
d2

dt2 +

K)P ( d
dt ). By defining L(ζ, η) := PT (ζ)Mζη−K)P (η) we then obtain B = ker ∂L( d

dt );
equivalently, B is the space of stationary trajectories of the QDF QL(w).

((2) ⇒ (1)) Since B = ker ∂Φ( d
dt ), the claim is proved if we show that the

invariant polynomials of ∂L are all even. Observe first that ∂L is para-Hermitian.
Now let 1 ≤ k ≤ w, and consider the set Mk consisting of all k × k minors of ∂L(ξ).
Observe that since ∂L = (∂L)∼, if m ∈ Mk, then also m∼ ∈ Mk. Now use an argument
analogous to that used in the proof of Proposition 2.3 in order to conclude that the
invariant polynomials of ∂L are either even or odd. Conclude from χB(0) �= 0 that
there are no odd invariant polynomials; then it follows from statement (2) of Theorem
3.4 that B is Hamiltonian.

The rest of the claim of the theorem follows easily from the definition of L. This
concludes the proof.

If, in statement (2) of Theorem 4.2, we interpret q = P ( d
dt )w as generalized posi-

tion, then d
dtq = d

dtP ( d
dt )w is generalized velocity, and consequently | ddtP ( d

dt )w|2M =

| ddtq|2M and |P ( d
dt )w|2K = |q|2K can be interpreted, respectively, as kinetic and potential

energy. From this point of view, the QDF QL(w) can be interpreted as a Lagrangian,
and the QDF QH(w) can be interpreted as a Hamiltonian of the system.

The equation ∂L( d
dt )w = 0 is the Euler–Poisson equation associated with the

QDF QL. Motivated by the fact that QL(w) can be interpreted as a Lagrangian of
the system B, we also call it an Euler–Lagrange equation associated with the system
B.

The next theorem relates Hamiltonianity with the existence of a latent variable
representation of second order in the latent variable q = P ( d

dt )w, with P as in Theorem
4.2.
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Theorem 4.3. Let B ∈ Lw be autonomous. Assume that χB(0) �= 0, i.e., its
characteristic polynomial has no root in 0. Then the following statements are equiva-
lent:

(1) B is Hamiltonian.
(2) n(B) is even, and there exist M = MT ,K = KT ∈ R

q×q nonsingular, C1 ∈
R
w×q and C2 ∈ R

w×q, with q := n(B)/2, such that

M
d2

dt2
q + Kq = 0,(4.8)

C1q + C2
d

dt
q = w

is an observable latent variable representation of B with latent variable q.

Furthermore, if M d2

dt2 q + Kq = 0, w = C1q + C2
d
dtq is an observable latent variable

representation of B with latent variable q, then the equations M̄ d2

dt2 q̄ + K̄q̄ = 0,

w = C̄1q̄ + C̄2
d
dt q̄ form an observable latent variable representation of B with latent

variable q̄ if and only if there exist S, T ∈ R
q×q such that the matrix(

S T
−TM−1K S

)
(4.9)

is nonsingular, and the relations SM−1K = M̄−1K̄S, TM−1K = M̄−1K̄T , C1 =
C̄1S − C̄2TM

−1K, and C2 = C̄1T + C̄2S hold.
Proof. ((1) ⇒ (2)) Define Mi and Ki by (4.5) and (4.6), respectively. From (4.7)

it follows that w′
i ∈ B′

i = ker λi(
d
dt ) if and only if (Mi

d2

dt2 + Ki)Ei(
d
dt )w

′
i = 0. Using

this, it is easily seen that the equations Mi
d2q
dt2 + Kiq = 0, qi = Ei(

d
dt )w

′
i form an

observable latent variable representation of B′
i with latent variable qi. Next consider

the equations Mi
d2qi
dt2 + Kiqi = 0, eTi qi = w′

i, where as before ei := col(1, 0, . . . , 0) ∈
R

Li×1. Using the special structure of Mi and Ki, it can be verified that also these
equations form an observable latent variable representation of B′

i. Now define C :=

block diag(eTi ). Then clearly M d2q
dt2 +Kq = 0, Cq = w′ is an observable latent variable

representation of B′. An observable latent variable representation of the original
system B is then obtained by replacing the equation w′ = Cq by w = V −1( d

dt )Cq.

Note that V −1(ξ)C is a polynomial matrix and that any derivative q(i) with i ≥ 2
can be expressed in terms of q or q(1) using the first equation in (4.8). From this we

conclude that matrices C1 and C2 exist such that M d2q
dt2 + Kq = 0, w = C1q + C2

d
dtq

is an observable latent variable representation of B.
((2) ⇒ (1)) By defining x1 = q, x2 = dq

dt , and C = (C1 C2), the state-space

representation of B given by d
dtx1 = x2,

d
dtx2 = M−1Kx1, w = Cx is obtained.

Clearly, (x1, x2) is observable from w, so this state-space representation is minimal.
Observe also that(

0 I
−M−1K 0

)T (
0 M

−M 0

)
+

(
0 M

−M 0

)(
0 I

−M−1K 0

)
= 0.

Since M is nonsingular, we conclude from statement (3) of Theorem 3.4 that B is
Hamiltonian.

Assume now that M d2

dt2 q + Kq = 0, w = C1q + C2
d
dtq is an observable latent

variable representation of B with latent variable q. Suppose the equations M̄ d2

dt2 q̄ +
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K̄q̄ = 0, w = C̄1q̄+ C̄2
d
dt q̄ form an observable latent variable representation of B with

latent variable q̄. Then clearly d
dtx = Ax, w = Cx and d

dt x̄ = Āx̄, w = C̄x̄ with

A :=

(
0 I

−M−1K 0

)
, Ā :=

(
0 I

M̄−1K̄ 0

)
,

C :=
(
C1 C2

)
, C̄ :=

(
C̄1 C̄2

)
are two minimal state representations of B. Consequently there exists a nonsingular
F ∈ R

2q×2q such that ĀF = FA and C̄F = C. Using the special structure of the
state-space representations it is easily seen that F must be of the form (4.9) and that
the relations in the claim must hold. Conversely, by defining F by (4.9), we see that
ĀF = FA and C̄F = C, so that the corresponding state realizations have the same
manifest behavior B.

Remark 4.4. Note that in the proof of implication (2) ⇒ (1) the assumption that
χB(ξ) has no root in ξ = 0 is not used. Our proof of implication (1) ⇒ (2) does use
this assumption. At present we do not have a proof of or a counterexample to this
implication without the assumption χB(0) �= 0.

In classical mechanics, the variable q consists of the position of the masses, and
(4.8) is obtained by writing down Newton’s second law. Theorem 4.3 shows that
a Hamiltonian behavior can always be interpreted in some sense as a “mechanical
system,” with q “generalized position,” d

dtq “generalized velocity,” M a “mass matrix,”
and K a matrix of “elastic constants.” Further, the theorem characterizes all such
representations. Of course d

dtq
TM d

dtq can be interpreted as kinetic energy, qTKq as

potential energy, ( d
dtq)

TM( d
dtq)− qTKq as a Lagrangian, and ( d

dtq)
TM( d

dtq) + qTKq
(which is constant along solutions q of the first equation in (4.8)) as total energy.

The similarity between (4.8) and the second-order representation typical of con-
servative mechanical systems should not, however, be pushed too far. Indeed, the
reader can verify that the matrix M defined in the proof of Theorem 4.3 is in general
not positive-definite, as a bona fide mass matrix should be. Nor would the “kinetic”
and “potential” terms | P ( d

dt )w |2M and | P ( d
dt )w |2K have in general the physical di-

mensions of energies. For further discussion on these issues see the following example.
Example 4.5. Consider the configuration of Example 3.3. As shown in that

example, the behavior B of the position w of the first mass is represented by

r

(
d

dt

)
w = m1m2

d4

dt4
w + (k1m1 + k2m1 + k1m2)

d2

dt2
w + k1k2w = 0.

In order to obtain an observable second-order latent variable representation (4.8) of
B we proceed as in the proof of Theorem 4.3 and define the latent variable q =

col(w, d2

dt2w). Then

M :=

(
r2 r4
r4 0

)
, K :=

(
r0 0
0 −r4

)
, C1 = 1, C2 = 0.

The matrix M is not positive-definite, as can be verified choosing k1 = k2 = 1 N
m and

m1 = m2 = 1 kg. Observe also that with such a choice of M , a physical interpretation
of d

dtq
TM d

dtq is impossible, since the physical dimensions of such a quantity are not
those of an energy. However, by choosing

K̄ :=

(
k2

k2m1

k1

k2m1

k1

m2
1(k1+k2)

k2
1

)
, M̄ :=

(
m1 + m2

m1m2

k1

m1m2

k1

m2
1m2

k2
1

)
, C̄1 := 1, C̄2 := 0,
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we obtain an alternative second-order latent variable representation of B, with the
same latent variable as before. Note that M̄−1K̄ = M−1K so that this alternative rep-
resentation is obtained from the original one by taking in Theorem 4.3 S = I, T = 0.
For this second choice of representation, the generalized kinetic energy ( d

dtq)
TM( d

dtq)
and generalized potential energy qTKq coincide with the physical kinetic energy
and potential energy of the system with the two masses, that is, Ekin(w1, w2) =
1
2 (m1(

d
dtw1)

2 + m2(
d
dtw2)

2) and Epot(w1, w2) = 1
2 (k1w

2
1 − 2k1w1w2 + (k1 + k2)w

2
2).

This can be verified observing that the generalized position q = (w, d2

dt2w) is related

to the actual position (w1, w2) as w1 = w, w2 = w + m1

k1

d2

dt2w.
It is a matter for further investigation to see whether and how a physically con-

sistent choice of the matrices M and K can always be performed. Such an issue is
particularly pressing when considering the use of the procedures presented in this
paper for computer-assisted modeling and simulation.

5. Internal forces and controllable Hamiltonian systems. In this section
we define internal forces as auxiliary variables and we show how they can be obtained
from a higher-order Lagrangian such as that introduced in Theorem 4.2. The notion
of internal force obtained in this way brings us in a natural way to the definition of a
controllable Hamiltonian system; in this section we also give various characterizations
of such systems in terms of their kernel, image, or state-space representations.

According to Theorem 4.2, an autonomous system B ∈ Lw with χB(0) �= 0 is
Hamiltonian if and only if there exists a polynomial matrix P ∈ R

q×w[ξ] with full
column rank, M = MT ,K = KT ∈ R

q×q nonsingular, with q := n(B)/2, such that

B has a kernel representation PT (− d
dt )(M

d2

dt2 + K)P ( d
dt )w = 0. Obviously, a latent

variable representation with latent variable f of B is then given by the equations

PT

(
− d

dt

)
M

d2

dt2
P

(
d

dt

)
w = f,

f = −PT

(
− d

dt

)
KP

(
d

dt

)
w.(5.1)

For a given w ∈ B, the associated f = −PT (− d
dt )KP ( d

dt )w is called the internal
force associated with w. Observe that there are as many internal forces as there are
external variables, and that in the case of systems described by differential equations
of order higher than two, the internal force depends on higher-order derivatives of
the external variable (see Chapter 2, section 31 of [21], where, in the context of
the dynamics of a moving charge in an electromagnetic field, an internal force is
considered which depends on a potential function which depends on position and
velocity). Such a definition harmonizes with the classical mechanics point of view of
seeing the internal force as an auxiliary variable of the same dimension as the external
variables and coming from some potential function depending on the configuration
(external) variables. Indeed, when applied to the prototypical mechanical system

M d2

dt2 q + Kq = 0, w = q, equations (5.1) result in the internal force being defined as
f = −Kq and coming from the potential V (q) = qTKq.

The notion of internal force sheds light on the structure of autonomous Hamilto-
nian systems. Define B1,B2 ∈ Lw+f by

B1 :=

{(
w
f

)
|
(
PT (− d

dt )M
d2

dt2P ( d
dt ) −I

)(
w
f

)
= 0

}
,(5.2)
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B2 :=

{(
w
f

)
|
(
PT (− d

dt )KP ( d
dt ) I

)(w
f

)
= 0

}
.(5.3)

Note that both B1 and B2 are controllable linear differential systems. The set of
trajectories (w, f) compatible with the laws of both B1 and B2 is the behavior
B1 ∩ B2; we call it the full interconnection of B1 and B2. Now assume that P ,
M , and K in (5.1) have been computed as in the proof of ((1) ⇒ (2)) of Theorem 4.2.
It is a matter of straightforward verification to see that in such a case PT (−ξ)MP (ξ)
is nonsingular; this implies that in B1, f is input and w is output; it can also be
verified that in B2, w is input and f is output. In such a case the interconnection of
B1 and B2 is called a feedback interconnection (see [23]).

We conclude that any autonomous Hamiltonian behavior B is the feedback inter-
connection of two systems, the first one (B1) having a free f variable and the second
one (B2) imposing on such a variable the additional constraint represented by the
second equation in (5.1). From this standpoint, in B1, f is an external force which
can be chosen freely, while B2 constrains it to be a function of the external variables
w. This point of view has much in common with the notion of “Hamiltonian inter-
connection” introduced in [18], where the concept of an open Hamiltonian system is
introduced from a system-theoretic point of view.

Example 5.1. We consider again the system described in Examples 3.3 and 4.5.
Following the procedure illustrated above, B1 and B2 defined in (5.2) and (5.3) are
described, respectively, by

(m1 + m2)w + 2
m1m2

k1

d2

dt2
w +

m2
1m2

k2
1

d4

dt4
w = f,(5.4)

f = k2w +
2k2m1

k1

d2

dt2
w +

(
m2

1

k1
+

k2m
2
1

k2
1

)
d4

dt4
w.

Using the fact that w satisfies the fourth-order differential equation

m1m2
d4

dt4
w + (k1m1 + k2m1 + k1m2)

d2

dt2
w + k1k2w = 0,

the expression for f obtained from the second equation in (5.4) can be rewritten in

terms of the generalized position q = col(w, d2

dt2w) as

f =

(
k2 −

k2m1

m2
− k2

2m1

k1m2

)
w +

(
−m1 +

k2m1

k1
− m2

1

m2
− 2

k2m
2
1

k1m2
− k2

2m
2
1

k2
1m2

)
d2

dt2
w.

Such an expression can also be given in terms of the positions of the two masses
described in Example 3.3 as

f =

(
k2 +

k1m1

m2
+

k2m1

m2

)
w1 +

(
k2 − k1 −

k1m1

m2
− 2k2m1

m2
− k2

2m1

k1m2

)
w2.

The physical interpretation of such a quantity is not easy, though it should be re-
marked that the physical dimensions of such a latent variable are indeed those of a
force.

When modeling physical phenomena, closed (i.e., autonomous) systems are the
exception rather than the rule: the environment in which the system is embedded
almost always interacts with it, exerting some influence. Sometimes it is reasonable
to assume that the way in which the environment interacts with the system—in other
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words, the generating mechanism of the external influences—depends only on the
attributes of the system itself, the paramount example of such a situation being the
motion of a point mass or charge in a force field depending on its position. By
modeling the external influence as a function of the system “configuration” we obtain
an autonomous system, whose evolution depends only on its laws of motion and the
“initial state.”

If we take such a point of view when considering the description of B as the
interconnection of B1 and B2 defined in (5.2) and (5.3), it is natural to consider B1

as a model of an open system with external influences modeled by f and B2 as a
description of the way in which f depends on the variables w. In principle different
constraints could be imposed by B2 on f , and therefore it is natural to consider the
open system B1 as the starting point for a study of controllable Hamiltonian systems
and to investigate the consequences of the Hamiltonianity of B on B1. This leads us
to the definition of controllable Hamiltonian behavior, which we presently give.

Observe first that B1 defined by (5.2) has as many outputs (external variables
w) as inputs (the auxiliary variables f), in accordance with the point of view adopted
in classical mechanics of considering the configuration variables as manifest ones and
the external forces as inputs, each acting on a configuration variable (as in the case of
collocated sensors and actuators; see section 12.1 of [12]). Now consider two compact-

support trajectories (wi, fi) ∈ B1, i = 1, 2, and compute the integral
∫ +∞
−∞ w1f2 −

w2f1 dt. Integrating by parts using (5.2) and the fact that the trajectories (wi, fi)
are compact support, it is not difficult to verify that such an integral is zero. Such an
observation brings us to the notion of a controllable Hamiltonian system.

Definition 5.2. Let B ∈ Lw be controllable, with w even. Denote

Jw :=

(
0 I w

2

−I w
2

0

)
.(5.5)

B is called Hamiltonian if for all trajectories w1, w2 ∈ B ∩ D(R,Rw) we have∫ +∞

−∞
LJw

(w1, w2)dt = 0.

We discuss the relationship of Definition 5.2 with other notions of Hamiltonianity
in Remarks 5.5 and 5.6 below. We proceed by illustrating Definition 5.2 with an
example and then give a number of characterizations of Hamiltonianity for controllable
systems in Theorem 5.4, the main result of this section.

Example 5.3. Take the same system considered in Example 4.5, but with an
external force applied to the first mass. Choose as external variables the position q
of the first mass and the external force f ; then it is easy to see that the behavior of
the system is represented by the equation

m1m2
d4q

dt4
+ (m1k1 + m1k2 + m2k1)

d2q

dt2
+ k1k2q = m2

d2f

dt2
+ (k1 + k2)f.

In order for this system to be controllable, the polynomials d(ξ) := m1m2ξ
4+(m1k1+

m1k2 + m2k1)ξ
2 + k1k2 and n(ξ) := m2ξ

2 + k1 + k2 must be coprime. In that case
the system also admits an observable image representation induced by the polyno-
mial matrix M(ξ) := col(n(ξ), d(ξ)). We now show that this system is Hamiltonian.
Observe that for any pair of compact-support trajectories wi = M( d

dt )�i, i = 1, 2,
it holds that LJ2(w1, w2) = LΦ(�1, �2), where Φ(ζ, η) := M(ζ)TJ2M(η). In order
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to prove that
∫ +∞
−∞ LJ2(w1, w2)dt = 0, observe that Φ(−ξ, ξ) = 0. Conclude from

Theorem 3.1 of [24] that there exists Ψ ∈ R[ζ, η] such that Φ(ζ, η) = (ζ + η)Ψ(ζ, η),
equivalently, d

dtLΨ = LΦ. Now using the fact that the latent variable trajectories �i

also have compact support, we can infer that
∫ +∞
−∞ LΦ(�1, �2)dt = LΨ(�1, �2)

∣∣+∞
−∞ = 0.

In order to state the main result of this section, consisting of several alternative
characterizations of Hamiltonianity for controllable behaviors, we need to introduce
the notion of an orthogonal of a controllable behavior. Given a controllable linear
differential behavior B ∈ Lw, we define its orthogonal complement B⊥ as

B
⊥ :=

{
w ∈ C

∞(R,Rw)

∣∣∣∣
∫ +∞

−∞
wTw′ dt = 0 for all w′ ∈ B ∩ D(R,Rw)

}
.

The orthogonal B⊥ is again an element of Lw, and it is controllable (see section 10 of
[24]).

Theorem 5.4. Let B ∈ Lw be controllable, with w even. Let Jw be given by (5.5).
Then the following statements are equivalent:

(1) B is Hamiltonian.
(2) B = (JwB)⊥.
(3) M∼JwM = 0 for each M such that w = M( d

dt )� is an image representation
of B.

(4) RJwR
∼ = 0 for each R such that R( d

dt )w = 0 is a kernel representation of B.
(5) For every i/o partition col(u, y) = Πw of B the transfer function G from u

to y satisfies G∼Σ = ΣG, with Σ the w
2 × w

2 signature matrix determined by

ΠJwΠ
T =

(
0 Σ
−Σ 0

)
.(5.6)

(6) n := n(B) is even, and there exists a minimal i/s/o representation

d

dt
x = Ax + Bu, y = Cx + Du, col(u, y) = Πw

of B, such that JnA+ATJn = 0, ΣD = DTΣ, and BTJn = −ΣC, with Σ the
w
2 × w

2 signature matrix determined by (5.6).
(7) n := n(B) is even, and for every minimal i/s/o representation

d

dt
x = Ax + Bu, y = Cx + Du, col(u, y) = Πw

of B, there exists a nonsingular skew-symmetric matrix K ∈ R
n×n such that

KA+ATK = 0, ΣD = DTΣ, and BTK = −ΣC, with Σ the w
2 × w

2 signature
matrix determined by (5.6).

Proof. ((1) ⇔ (3)) Let w = M( d
dt )� be an image representation of B. Observe that∫∞

−∞ LJw
(w1, w2)dt = 0 for all w1, w2 ∈ B ∩ D(R,Rw) if and only if

∫∞
−∞ LΨ(�1, �2)dt =

0 for all �1, �2 of compact support, where Ψ(ζ, η) := M(ζ)TJwM(η). By Theorem 3.1
of [24] this holds if and only if M∼JwM = 0.

((3) ⇔ (5)) Let Π be a w × w permutation matrix such that for col(u, y) ∈ ΠB,
u is input and y is output. Let w = M( d

dt )� be any image representation of B with
M full column rank. Then correspondingly ΠM = col(U, Y ), with det(U) �= 0. The
transfer matrix from u to y is equal to the matrix of rational functions G = Y U−1.
We have

M∼JwM = M∼ΠTΠJwΠ
TΠM = M∼ΠT

(
0 Σ
−Σ 0

)
ΠM = U∼ΣY − Y ∼ΣU,
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with Σ a nonsingular w
2 ×

w
2 signature matrix. Since M∼JwM = 0 we obtain U∼ΣY −

Y ∼ΣU = 0, equivalently, G∼Σ = ΣG. Conversely, if G∼Σ = ΣG then take a coprime
factorization G = Y U−1. Then M := ΠT col(U, Y ) yields an observable image rep-
resentation w = M( d

dt )� of B which clearly satisfies M∼JwM = 0. It then follows

easily that M∼JwM = 0 for any M such that w = M( d
dt )� is an image representation

of B.
((3) ⇒ (2)) Observe that MT (− d

dt )w
′ = 0 is a kernel representation of B⊥

and MT (− d
dt )Jww

′′ = 0 is a kernel representation of (JwB)⊥. From M∼JwM = 0
it thus follows that B ⊆ (JwB)⊥. The equivalence ((3) ⇔ (5)) shows that every
transfer matrix of B is square, and consequently m(B) = p(B). Hence we have
m((JwB)⊥) = p(JwB) = p(B) = m(B). Using the calculus of behavioral equations (see
[15]) it is not difficult to prove that two controllable behaviors B1 and B2, with the
same number of inputs such that B1 ⊆ B2, must be equal. This implies that, in fact,
the equality B = (JwB)⊥ holds.

((2) ⇒ (1)) B ⊆ (JwB)⊥ by definition implies that
∫∞
−∞ LJw

(w1, w2)dt = 0 for all
w1, w2 ∈ B ∩ D(R,Rw).

((2) ⇔ (4)) Let R( d
dt )w = 0 be a kernel representation of B. Then w′ = RT (− d

dt )�

is an image representation of B⊥ and w′′ = JwR
T (− d

dt )� is an image representation of
(JwB)⊥ (see section 10 of [24]). Clearly (JwB)⊥ ⊆ B implies RJwR

∼ = 0. Conversely,
if RJwR

∼ = 0 then (JwB)⊥ ⊆ B. Also, it is easily seen that RJwR
∼ = 0 implies

condition (5), so that p(B) = m(B). By the same argument used in the proof of the
implication (3) ⇒ (2) this yields that B = (JwB)⊥.

((5) ⇒ (7)) Let (A,B,C,D) be the quadruple of matrices associated with a
minimal i/s/o representation of B. This yields an i/o partition with transfer matrix
G(ξ) = D +C(ξI −A)−1B. By minimality of the i/s/o representation it follows that
the pair (C,A) is observable; moreover, by controllability of B, it follows that the pair
(A,B) is controllable. Recall that there exists a nonsingular signature matrix Σ such
that ΣG = G∼Σ. This implies that (A,B,ΣC,ΣD) and (−AT , CTΣ,−BT , DTΣ) are
minimal realizations of the same transfer matrix. Consequently there exists a unique
nonsingular matrix K such that −AT = KAK−1, CTΣ = KB, −BT = ΣCK−1,
ΣD = DTΣ. It is easily verified that also −AT = (−KT )A(−K−T ), CTΣ = (−KT )B,
−BT = ΣC(−K−T ). Due to the uniqueness of K, it follows that KT = −K, i.e., K
is skew-symmetric.

((7) ⇒ (6)) Let (A,B,C,D) be the quadruple of matrices associated with a
minimal i/s/o representation of B. Let K be nonsingular and skew-symmetric and
let Σ be a nonsingular signature matrix such that KA + ATK = 0, ΣD = DTΣ,
and BTK = −ΣC. There exists a nonsingular matrix S such that STJnS = K.
Define Â := SAS−1, B̂ = SB, Ĉ = CS−1, and D̂ = D. This quadruple also defines a
minimal i/s/o representation of B. Moreover, it is easily verified that JnÂ+ÂTJn = 0,
ΣD̂ = D̂TΣ, and B̂TJn = −ΣĈ.

((6) ⇒ (3)) If an i/s/o representation of B exists satisfying the conditions in
(6), then it follows that the transfer matrix from u to y satisfies G∼Σ = ΣG. Take a
coprime factorization G = Y U−1. Then M := ΠT col(U, Y ) yields an observable image
representation w = M( d

dt )� of B which clearly satisfies M∼JwM = 0. It then follows

easily that M∼JwM = 0 for any M such that w = M( d
dt )� is an image representation

of B.
Remark 5.5. The definition of a nonlinear Hamiltonian i/o system put forward

in [7, 6] is based on the self-adjointness of the i/o map of the system. We now discuss
how such a point of view relates with that given in Definition 5.2 and elaborated on
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in Theorem 5.4. Assume that the variables w of the controllable system described in
kernel form by R( d

dt )w = 0, R of full row rank, are partitioned as w = col(u, y), with
u consisting of w

2 input variables, and y consisting of w
2 output variables. Then the

matrix R can be partitioned as R =
(
P −Q

)
, with P square and invertible.

Under these assumptions, the condition RJwR
∼ = 0 appearing in statement (4)

of Theorem 5.4 reads QP∼ − PQ∼ = 0, which is equivalent with formula (51) of [6],
once it is recalled that an image representation of the adjoint system (equivalently, of
the orthogonal behavior) to ker R( d

dt ) is given by Im RT (− d
dt ).

Remark 5.6. The characterization of Hamiltonian transfer functions given in
statement (5) of Theorem 5.4 is the same given in [3] in the context of i/s/o systems
and in [8] in the polynomial model context. See also [20], where an external char-
acterization of the adjoint of a linear system is given, and several of the techniques
used (see, in particular, section III loc. cit.) foreshadow those based on the calculus
of Q/BDFs used in the present paper.

Remark 5.7. It follows from Theorem 5.4 (for example, by applying condition
(4)) that the systems B1 and B2 represented by, respectively, (5.2) and (5.3) are
controllable Hamiltonian systems. In other words, if B is an autonomous Hamiltonian
system with χB(0) �= 0, then there exist two controllable Hamiltonian behaviors Bi,
i = 1, 2, such that B is the feedback interconnection of B1 and B2.

We conclude this section with two examples of controllable Hamiltonian systems.
Example 5.8. Newton’s second law defines a controllable Hamiltonian system

B = {(F, q) | F = m d2

dt2 q}, as it is easy to verify using, for example, statement (4) of
Theorem 5.4.

Example 5.9. Consider a parallel interconnection of a capacitor C with an
inductance L subject to an external current Ie. Assume that we choose as ex-
ternal variables for such a system the external current and the magnetic flux φL

in the inductance; it is easy to verify that in such a case the system equation is

( d2

dt2 + 1
CL )φL − 1

C Ie = 0. We show that this system is Hamiltonian. An observable
image representation of the system is induced by the matrix M(ξ) = col(1, Cξ2 + 1

L ).
Consider that M(ζ)TJ2M(η) = (ζ+η)Ψ(ζ, η) with Ψ(ζ, η) := C(ζ−η). Consequently

such a BDF satisfies d
dtLΨ = LJ2

on B, and therefore
∫ +∞
−∞ LJ2

(w1, w2) = 0 for all
w1, w2 ∈ B.

6. Conclusions. In this paper we have used the formalism of bilinear and
quadratic differential forms in order to study Hamiltonian systems. The approach
followed in this paper is representation-free, i.e., independent of the existence of a
special representation of the system, such as a transfer function or a state-space rep-
resentation. However, we have also given a characterization of Hamiltonianity for
various system representations such as kernel, state-space, and transfer function, in
the case of autonomous systems (Theorem 3.4) and of controllable ones (Theorem
5.4). We have also proposed a definition of generalized total energy and generalized
Lagrangian (see section 4), and we introduced the notion of generalized internal forces
for systems described by higher-order differential equations (see section 5).

The major limitation of the present work is its treatment of Hamiltonianity for
the controllable and autonomous case only, leaving out the general case of a system
comprising a nonzero controllable part and a nonzero “autonomous part” (for the
difficulty in defining uniquely such a subbehavior, see [15, p. 192]). The development
of a general theory of linear Hamiltonian behaviors that includes completely control-
lable and completely autonomous behaviors as special cases is a pressing issue in our
research.



790 P. RAPISARDA AND H. L. TRENTELMAN

In view of the encouraging results of the application of quadratic differential forms
in the context of infinite-dimensional systems (see [13, 14]), it can be hoped that some
of the results presented in this paper can be generalized also to systems described by
linear constant-coefficient partial differential equations; such an area of research is
presently under investigation. Another direction in which the research presented in
this paper is being extended is that of the connections between Hamiltonian systems
and optimal control.
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