4,131 research outputs found

    Pseudo-hamiltonian graphs

    Get PDF
    A pseudo-h-hamiltonian cycle in a graph is a closed walk that visits every vertex exactly h times. We present a variety of combinatorial and algorithmic results on pseudo-h-hamiltonian cycles. First, we show that deciding whether a graph is pseudo-h-hamiltonian is NP-complete for any given h > 1. Surprisingly, deciding whether there exists an h > 1 such that the graph is pseudo-h-hamiltonian, can be done in polynomial time. We also present sufficient conditions for pseudo-h-hamiltonicity that axe based on stable sets and on toughness. Moreover, we investigate the computational complexity of finding pseudo-h-hamiltonian cycles on special graph classes like bipartite graphs, split graphs, planar graphs, cocomparability graphs; in doing this, we establish a precise separating line between easy and difficult cases of this problem

    Hamilton cycles, minimum degree and bipartite holes

    Full text link
    We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large ``bipartite hole`` (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chv\'atal and Erd\H{o}s. In detail, an (s,t)(s, t)-bipartite-hole in a graph GG consists of two disjoint sets of vertices SS and TT with ∣S∣=s|S|= s and ∣T∣=t|T|=t such that there are no edges between SS and TT; and α~(G)\widetilde{\alpha}(G) is the maximum integer rr such that GG contains an (s,t)(s, t)-bipartite-hole for every pair of non-negative integers ss and tt with s+t=rs + t = r. Our central theorem is that a graph GG with at least 33 vertices is Hamiltonian if its minimum degree is at least α~(G)\widetilde{\alpha}(G). From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of kk edge-disjoint Hamilton cycles. We see that for dense random graphs G(n,p)G(n,p), the probability of failing to contain many edge-disjoint Hamilton cycles is (1−p)(1+o(1))n(1 - p)^{(1 + o(1))n}. Finally, we discuss the complexity of calculating and approximating α~(G)\widetilde{\alpha}(G)

    On sufficient conditions for Hamiltonicity in dense graphs

    Full text link
    We study structural conditions in dense graphs that guarantee the existence of vertex-spanning substructures such as Hamilton cycles. It is easy to see that every Hamiltonian graph is connected, has a perfect fractional matching and, excluding the bipartite case, contains an odd cycle. Our main result in turn states that any large enough graph that robustly satisfies these properties must already be Hamiltonian. Moreover, the same holds for embedding powers of cycles and graphs of sublinear bandwidth subject to natural generalisations of connectivity, matchings and odd cycles. This solves the embedding problem that underlies multiple lines of research on sufficient conditions for Hamiltonicity in dense graphs. As applications, we recover and establish Bandwidth Theorems in a variety of settings including Ore-type degree conditions, P\'osa-type degree conditions, deficiency-type conditions, locally dense and inseparable graphs, multipartite graphs as well as robust expanders

    Hamiltonicity, Pancyclicity, and Cycle Extendability in Graphs

    Get PDF
    The study of cycles, particularly Hamiltonian cycles, is very important in many applications. Bondy posited his famous metaconjecture, that every condition sufficient for Hamiltonicity actually guarantees a graph is pancyclic. Pancyclicity is a stronger structural property than Hamiltonicity. An even stronger structural property is for a graph to be cycle extendable. Hendry conjectured that any graph which is Hamiltonian and chordal is cycle extendable. In this dissertation, cycle extendability is investigated and generalized. It is proved that chordal 2-connected K1,3-free graphs are cycle extendable. S-cycle extendability was defined by Beasley and Brown, where S is any set of positive integers. A conjecture is presented that Hamiltonian chordal graphs are {1, 2}-cycle extendable. Dirac’s Theorem is an classic result establishing a minimum degree condition for a graph to be Hamiltonian. Ore’s condition is another early result giving a sufficient condition for Hamiltonicity. In this dissertation, generalizations of Dirac’s and Ore’s Theorems are presented. The Chvatal-Erdos condition is a result showing that if the maximum size of an independent set in a graph G is less than or equal to the minimum number of vertices whose deletion increases the number of components of G, then G is Hamiltonian. It is proved here that the Chvatal-Erdos condition guarantees that a graph is cycle extendable. It is also shown that a graph having a Hamiltonian elimination ordering is cycle extendable. The existence of Hamiltonian cycles which avoid sets of edges of a certain size and certain subgraphs is a new topic recently investigated by Harlan, et al., which clearly has applications to scheduling and communication networks among other things. The theory is extended here to bipartite graphs. Specifically, the conditions for the existence of a Hamiltonian cycle that avoids edges, or some subgraph of a certain size, are determined for the bipartite case. Briefly, this dissertation contributes to the state of the art of Hamiltonian cycles, cycle extendability and edge and graph avoiding Hamiltonian cycles, which is an important area of graph theory
    • …
    corecore