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ABSTRACT

Hamiltonicity, Pancyclicity, and

Cycle Extendability in Graphs

by

Deborah C. Arangno, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. David E. Brown
Department: Mathematics and Statistics

The study of cycles, particularly Hamiltonian cycles, is very important in many

applications.

Bondy posited his famous metaconjecture, that every condition sufficient for Hamil-

tonicity actually guarantees a graph is pancyclic. Pancyclicity is a stronger structural

property than Hamiltonicity.

An even stronger structural property is for a graph to be cycle extendable. Hendry

conjectured that any graph which is Hamiltonian and chordal is cycle extendable.

In this dissertation, cycle extendability is investigated and generalized. It is proved

that chordal 2-connected K1,3-free graphs are cycle extendable. S-cycle extendability

was defined by Beasley and Brown, where S is any set of positive integers. A conjecture

is presented that Hamiltonian chordal graphs are {1, 2}-cycle extendable.

Dirac’s Theorem is an classic result establishing a minimum degree condition for

a graph to be Hamiltonian. Ore’s condition is another early result giving a sufficient

condition for Hamiltonicity. In this dissertation, generalizations of Dirac’s and Ore’s

Theorems are presented.

The Chvàtal-Erdős condition is a result showing that if the maximum size of an

independent set in a graph G is less than or equal to the minimum number of vertices

whose deletion increases the number of components of G, then G is Hamiltonian. It is
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proved here that the Chvàtal-Erdős condition guarantees that a graph is cycle extend-

able. It is also shown that a graph having a Hamiltonian elimination ordering is cycle

extendable.

The existence of Hamiltonian cycles which avoid sets of edges of a certain size and

certain subgraphs is a new topic recently investigated by Harlan, et al., which clearly

has applications to scheduling and communication networks among other things. The

theory is extended here to bipartite graphs. Specifically, the conditions for the existence

of a Hamiltonian cycle that avoids edges, or some subgraph of a certain size, are deter-

mined for the bipartite case.

Briefly, this dissertation contributes to the state of the art of Hamiltonian cycles,

cycle extendability and edge and graph avoiding Hamiltonian cycles, which is an impor-

tant area of graph theory.

(97 pages)
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PUBLIC ABSTRACT

Hamiltonicity, Pancyclicity, and

Cycle Extendability in Graphs

by

Deborah C. Arangno, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. David E. Brown
Department: Mathematics and Statistics

A significant portion of Graph Theory is devoted to determining the characteristics

which guarantee the existence of long cycles.

Long cycles have roles in applications to civil engineering, chemistry, and commu-

nications, among many others, but the problem, in and of itself, of determining whether

a graph has a cycle of some fixed and typically large length is one of the most important

problems of both pure Mathematics and Computer Science.

A cycle containing all the vertices of the graph is called a Hamiltonian cycle, and

a graph which possesses such a cycle is said to be Hamiltonian. If a graph contains

cycles of every length, from three to the number of vertices of the graph it is said to

be pancyclic. J.A. Bondy famously posited what is referred to as Bondy’s metaconjec-

ture: Every condition which guarantees a graph is Hamiltonian actually guarantees it

is pancyclic. If the vertices of a cycle of length � are contained in a cycle of length

� + 1, the cycle is said to be extendable. If every non-Hamiltonian cycle in a graph is

extendable, the graph is said to be cycle-extendable. That a graph is cycle extendable is

a stronger structural property than being pancyclic which is in turn stronger than being

Hamiltonian. Nevertheless George Hendry pioneered the study of cycle extendability by

proving the following statement for many types of graphs possessing conditions sufficient

for Hamiltonicity: A non-Hamiltonian cycle in a graph with a property that guarantees
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it is Hamiltonian also guarantees it is cycle extendable.

A graph H is an induced subgraph of another graph G if H can be obtained from

G by deleting vertices. A graph is said to be chordal if it has no cycle on four or more

vertices as an induced subgraph; that is, every cycle long enough to have a chord (an

edge connecting two nonconsecutive vertices on a cycle), has a chord. Hendry conjec-

tured that any graph which is Hamiltonian and chordal is cycle extendable.

In this thesis the following questions are addressed: What are sufficient conditions

for cycle extendability? And what progress can we make in resolving Hendry’s Con-

jecture, in particular? Included among other things, results relating to Hamiltonicity,

pancyclicity, and cycle extendability are developed and proved.

It is proved that a graph satisfying the Chvàtal-Erdős condition, κ(G) ≥ α(G),

is cycle extendable. It is proved that 2-connected claw-free chordal graphs are cycle

extendable, and a forbidden subgraph pair determining cycle extendability in chordal

graphs is provided. It is also proved that a graph having a Hamiltonian elimination

ordering is cycle extendable.

A new minimum degree condition for Hamiltonicity is presented, and generaliza-

tions of Dirac’s condition and Ore’s condition are given.

Furthermore, bipartite graphs are investigated, (bipartite graphs being graphs that

contain no odd cycles), and the questions are considered: what conditions guarantee

there is a Hamiltonian cycle which avoids certain subsets of edges (referred to as “edge-

avoiding” Hamiltonicity in a bipartite graph)? and under what conditions, given a

bipartite graph G, and any graph F , can we determine whether G contains a Hamilto-

nian cycle that avoids some subgraph H that is isomorphic to F (such a graph G will

be referred to as F -avoiding Hamiltonian bipartite)?

This dissertation presents new conditions and properties that guarantee desired

cycle structure in graphs of different kinds, and ultimately contributes to a deeper un-

derstanding of the properties of graphs that affect Hamiltonicity and cycle extendability,

which is important in many applications in the real world.
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2.4 The Chvátal-Erdős Condition . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Elimination Orderings in Graphs, and {1, 2}-Cycle Extendability . . . . . 48

3 NEW RESULTS: HAMILTONICITY 53

3.1 Generalizing Classical Theorems . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Generalizing Dirac’s Condition . . . . . . . . . . . . . . . . . . . . 53

3.1.2 Generalizing Ore’s Condition . . . . . . . . . . . . . . . . . . . . . 55

3.2 A New Minimum Degree Condition for Hamiltonicity . . . . . . . . . . . . 56

3.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Minimum Degree Result . . . . . . . . . . . . . . . . . . . . . . . . 57

4 NEW RESULTS: BIPARTITE HAMILTONIAN GRAPHS 59

4.1 Hamiltonicity in Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . 60



x

4.2 Edge-Avoiding Hamiltonicity in Bipartite Graphs . . . . . . . . . . . . . . 62

4.3 F -Avoiding Hamiltonicity in Bipartite Graphs . . . . . . . . . . . . . . . . 63

5 DIRECTIONS FOR FURTHER STUDY 66

5.1 Cycle Extendability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

BIBLIOGRAPHY 71

GLOSSARY 79

VITA 80



xi

List of Figures

1.1 Perfect Elimination Ordering in a Chordal Graph . . . . . . . . . . . . . . 10

1.2 Clique-Tree Decomposition of a Chordal Graph . . . . . . . . . . . . . . . 12

1.3 Sharpness Example: Ore’s Condition . . . . . . . . . . . . . . . . . . . . . 14
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CHAPTER 1

INTRODUCTION AND BACKGROUND

A graph is a very generic mathematical construct, representing relationships be-

tween objects, or networks of any sort – neural, social, electrical, etc.

The study of graph theory can be traced back to 1735 when Leonard Euler re-

solved the famous Königsberg bridge problem, which was whether someone, leaving

their home, could traverse the seven bridges spanning the Pregel River, exactly once

and return home. Euler interpreted the problem abstractly, with the bridges repre-

sented by edges of a graph, and formally stated the condition for which the resulting

graph had a closed path which contained every edge. The condition – that all vertices of

a given connected graph must have even degree – is both necessary and sufficient, and

a graph having such a closed path is known as an Eulerian graph. To complete a cycle

that uses every edge of a graph, each time you visit a vertex by one edge, you must exit

by another edge, hence the necessity that each vertex be incident to an even number

of edges is readily apparent. But this condition is an example of a biconditional result

in graph theory in which it is usually the case, that while necessity of a condition may

be obvious, its sufficiency is more difficult to prove. In proving this particular result,

Euler introduced novel methods, unique to the discipline of graph theory, and laid a

cornerstone for a truly new branch of mathematics. His reasoning that vertices have

even degree was sufficient for an Eulerian circuit to exist, was as follows: first, he proved

that a connected graph of even degree must contain a cycle (by way of contradiction,

using a longest path argument). Next, he deleted a longest such cycle. What remains

must be a connected graph of even degree. He repeated this cycle deletion, until all

the edges are exhausted. Now, the graph is the union of edge-disjoint cycles, and an
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Eulerian tour can be traversed by splicing together the cycles at common vertices.

In so framing the Königsberg bridge problem in mathematical terms, Euler became

the Father of Graph Theory.

The field of study grew rapidly, and research in the field quickly branched into

countless subfields. Cycles in particular continue to be an area of enormous interest and

importance.

In 1857, William Rowan Hamilton introduced the icosian game, the object of which

was to trace along the edges of a dodecahedron, passing through each vertex, and re-

turning to the starting point. Since then, much research has been dedicated to finding

sufficient conditions for the existence of a such a cycle which spans the vertex set of

a graph, known as a Hamiltonian cycle. Algorithmically, this problem is known to be

NP-complete. Unlike Eulerian graphs, there is no condition which is both necessary and

sufficient for a graph to be Hamiltonian, other than the existence of a spanning cycle.

For a graph to be Hamiltonian, it is necessary that the graph be 2-connected (which

is, it has no cut vertex, hence every pair of vertices lies on a cycle), but 2-connected

is not sufficient. It is also necessary that the graph be 1-tough, which means that the

cardinality of the largest cut set S ⊆ V (G) is greater than or equal to the number of

components in the disconnected graph when S is removed. However that is not sufficient

for a Hamiltonian cycle to exist, either. Graph theorists have devoted much time to the

search for sufficient conditions for Hamiltonicity.

The study of cycles in graphs is a very important specialty in graph theory, not

only historically in the establishment of Graph Theory as a field of Mathematics, but

research in this area continues to be applied in diverse disciplines. Cycles are used in

genomics and in chemistry such as in analyzing the benzene valence isomers of benzenoid

rings. Cycle theory is used in studying polycyclic aromatic hydrocarbons and noncyclic

aromatic systems (Trinajstik [89]). The theory of cycles is applied to bioinformatics

(Jones and Pevzner [65]), DNA fragment assembly (Kaptcianos [66]), and in genome

sequencing (Craven [33]).

Other applications include networks, scheduling, circuit design, software testing,

optimizing transit routes and other routing problems, and job sequencing of a single
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asset to multiple tasks, etc. Consider for example having to drill holes in an electrical

circuit board, which requires scheduling a drilling machine to drill holes one by one. To

minimize the time it takes to drill all holes, we should minimize the distance the machine

(or the board) needs to move when re-positioning from hole to hole. We can model this

problem as a graph with holes at the vertices, and the weight on each edge representing

the geometric distance between the holes on the board. Optimal scheduling corresponds

to a minimal weighted Hamiltonian cycle (see vanSteen [90]). Many problems of this

type fall under the class of Traveling Salesman Problem (abbreviated TSP), which op-

timizes a route that must visit all the drop-off points on a map (see Applegate et al.

[6]). The TSP problem is well-studied, and has generated a great deal of interest in the

computational complexity of mathematical problems. In 1972, in a pioneering paper on

computational complexity, Karp [67] identified the problem of finding whether a graph

has a Hamiltonian cycle as one of the most fundamental NP-complete problems. On

the one hand, whereas identifying whether a graph has an Eulerian cycle can be done

easily by an inspection of the vertex degrees, there is no such nice characterization of a

Hamiltonian graph. Algorithmically, it is an unmanageable problem.

An entire branch of mathematical study has emerged as Hamiltonian Graph Theory.

Since Hamilton, mathematicians world-wide have labored to make progress in trying to

establish sufficient conditions for the existence of cycles of special kinds – such as a

spanning cycle, or the existence of cycles of all lengths. A summary of results in the

area of Hamiltonian cycles was compiled in a 1991 survey by R. Gould [50], which he

continuously updates [51].

One of the earliest theorems providing sufficient conditions for the existence of a

Hamiltonian cycle is due to Dirac. Dirac showed that if the minimum degree of a graph

G is at least n/2, where n is the the number of vertices in V (G), referred to as the order

of the graph, then G has a cycle that contains all the vertices – a Hamiltonian cycle.

But the most pivotal result followed Dirac, and was due to Ore, who proved that for a

graph to have a Hamiltonian cycle, it wasn’t necessary for all the vertices to be adjacent

to at least half the vertices of the graph: it was sufficient that the minimum degree sum

of any pair of non-adjacent vertices be at least n (the order of G). See Theorem 1.18.
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As we will see, Dirac’s minimum degree condition follows as a corollary to Ore’s

Theorem, and indeed many other important consequences follow, as well. Ore’s Theo-

rem turns out to be significant in many ways, as we shall observe.

However, Ore’s Theorem, and by consequence, Dirac’s Condition, are far stronger

conditions than necessary for the existence of a Hamiltonian cycle. As an example, con-

sider a graph G ∼= Cn, which is a cycle on n vertices, where n is large. Since G is itself

a cycle, it is ipso facto Hamiltonian. Yet the degree of every vertex of G is 2, hence G

neither satisfies Ore’s Theorem nor Dirac’s Condition. In fact, we will see that Ore’s

Theorem (and Dirac’s Condition) guarantee a great deal more besides Hamiltonicity. As

we will discuss later in this chapter, Bondy proved that Ore’s Theorem was sufficient

for a graph to be pancyclic, that is, to have cycles of every length from the 3-cycle to

the spanning cycle (with certain exceptions). And Hendry proved that those same con-

ditions are sufficient, with certain exceptions, for a graph to be cycle extendable (that

is, any non-Hamiltonian cycle can be extended by a vertex).

So, graph theorists continue to search for sufficient conditions for Hamiltonicity

that are not so strong nor so restrictive. The results of research in the area of cycles,

subsequent to Ore, fall into different categories: those having to do with minimum de-

gree or minimum edge constraints (for example Dirac [35], Bondy [18]), or with degree

sum conditions (for example Ore [79], Flandrin et al. [41]). There are results identify-

ing forbidden subgraphs ( for example, Bedrossian [13], Broersma et al. [23], Duff [36],

Gould et al. [52]), neighborhood union conditions (Broersma et al. [22]), conditions on

toughness (Jackson et al. [59]), degree sequence type conditions (Chvàtal [30]), and the

relation of connectedness relative to independence number – the so-called Chvátal-Erdős

type theorems (Chvàtal [32]).

As a final point arguing that the study of cycles is a field unto itself, Nikoghosyan

[77] has written a meta-mathematical survey of the development of theorems in the

study of cycle structure in graphs, classifying the methods used in achieving results in

this field.

Soon it was discovered that results in one area of the study of cycles, often lead
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to discoveries in related areas. In proving Ore’s condition for Hamiltonicity was suffi-

cient for pancyclicity, Bondy [18] famously conjectured that any sufficient condition for

a graph to have a Hamiltonian cycle must be sufficient for the graph to have cycles of all

lengths. This suggestion, that almost any sufficient condition that implies Hamiltonicity

also probably implies pancyclicity, is referred to as Bondy’s Meta-conjecture. This meta-

conjecture continues to challenge mathematicians, who devote years to proving whether

known conditions for Hamiltonicity yield pancyclicity.

For example, Schmeichel and Hakimi [85] proved if there are two consecutive ver-

tices on a Hamiltonian cycle with degree sum at least n, the order of the graph, then the

graph is pancyclic, (unless it is bipartite or missing an (n−1)-cycle). As Amar points out

in [3], Bauer and Schmeichel [10] then proved that a number of well-known conditions for

Hamiltonicity – Dirac’s minimum degree condition, Chvátal’s degree sequence condition,

and another condition attributed to Geng-Hua Fan, included – all imply Schmeichel and

Hakimi’s theorem, establishing pancyclicity except in special cases.

Bondy [19] had proven that if a graph satisfies Ore’s Condition for Hamiltonicity,

and C is a non-Hamiltonian cycle, then there exists a cycle containing the vertices of C

and having length |V (C)|+i, where i = 1 or 2.

The classic method of proving that a graph is Hamiltonian is to assume that a

longest cycle does not span the vertex set of the graph, that is, G has a longest cycle C

of length k<n, then obtain a contradiction by finding a longer cycle C
� (contradicting

the maximality of the cycle C). This idea of taking a cycle, and finding a longer one

which extends the given cycle, motivated another major topic of research, that of cycle

extendability, first formally studied by George Hendry [57] in his PhD dissertation, in

which he proved that Ore’s sufficient condition for Hamiltonicity was also sufficient for

cycle-extendability.

On the other hand, starting with a Hamiltonian cycle, if a cycle of every length can

be obtained by reducing a larger cycle, we get a pancyclic ordering, and such a graph is

called cycle reducible.

A chordal graph is a graph in which any induced cycle of length greater than three

has a chord. Chordal graphs are also referred to as triangulated. It is easy to verify that
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a graph is cycle reducible if and only if it is chordal. If a chordal graph is Hamiltonian,

it is pancyclic. We will investigate this class of graphs further in Chapter 2.

The similarities between cycle extendability and cycle reducibility in graphs moti-

vates us to look for similarities in their characterizations, and sufficient conditions. In

fact, Hendry also conjectured that chordal Hamiltonian graphs are cycle extendable.

That is, cycle-reducibility can be reversed, if the graph is chordal and Hamiltonian. For

the last 20 years, graph theorists have been intrigued by Hendry’s conjecture, and have

made progress in identifying subclasses of chordal graphs which have the property of

cycle extendability. The special kinds of chordal graphs which are now known to be

cycle extendable include Hamiltonian interval graphs (Abuedia and Sritharan [1], and

Chen et al. [27]), Hamiltonian planar graphs (Jiang [64]), and Hamiltonian split graphs

(where a graph splits if its vertex set can be partitioned onto a complete graph and

an independent set) [1]. And since Bender [15] proved that almost all chordal graphs

split, this suggests that most Hamiltonian chordal graphs are indeed cycle extendable.

However, recently LaFond and Seamone [71] have identified counterexamples to show

that Hendry’s conjecture is not true for a small subclass of chordal graphs.

This dissertation investigates these questions and presents new results on Hamil-

tonicity and cycle extendability among other things. Specifically, in Chapters 2–3, we

provide answers to the important open questions: what conditions are sufficient for the

existence of a Hamiltonian cycle, and for which graphs is Hendry’s conjecture true?

What are sufficient conditions for cycle extendability? and What progress can we make

in resolving Hendry’s Conjecture, in particular?

Among other things, we present the following results:

• A graph satisfying the Chvàtal-Erdős condition, that κ(G) ≥ α(G), is cycle ex-

tendable;

• A graph having a Hamiltonian elimination ordering is cycle extendable;

• A 2-connected K1,3-free chordal graph is cycle-extendable.
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In a 2-connected graph, when particular pairs of induced subgraphs are forbidden,

the graph is Hamiltonian. Among those forbidden subgraph pairs is {K1,3, P6}. Anal-

ogous to this, we establish the existence of a forbidden subgraph pair, F1, F2, for cycle

extendability in chordal graphs.

Although LaFond and Seamone [71] have identified counterexamples to show that

Hendry’s conjecture is not true, we present the conjecture that Hamiltonian chordal

graphs are {1,2}-cycle-extendable.

Additionally, we present new minimum degree conditions for Hamiltonicity, and

generalizations of Dirac’s condition and Ore’s condition. These results expand on the

current theory to shed light on the cycle structure of graphs beyond what we now un-

derstand.

In a related topic, Kronk [70], extended results due to Posá [80], giving conditions

on a graph G, such that if H is any collection of non-trivial paths in G having k edges,

then there is a Hamiltonian cycle in G containing all the edges of H. This led to a new

kind of problem in the study of cycle structure in graphs.

In contrast, Harlan [Harris] et al. [54] studied the conditions necessary for a Hamil-

tonian cycle to exist in a graph which avoids specified edges – referred to as edge-avoiding

behavior of a graph. In this dissertation we will expand upon that subject area by pro-

viding special conditions for edge-avoiding behavior in bipartite graphs (any graph that

contains no odd cycle, which is a cycle on an odd number of vertices) in Chapter 4. In

that chapter, we determine conditions that give us an edge-avoiding Hamiltonian cycle

in a bipartite graph, and what guarantees there is a Hamiltonian cycle which avoids

certain subsets of edges. We also present conditions under which, given a a bipartite

graph G, and any graph F , we can determine whether G contains a Hamiltonian cycle

that avoids some subgraph H that is isomorphic to F . We will refer to such a graph G

as F -avoiding Hamiltonian bipartite.

This chapter provides an overview of what is already known in the field of cycles,

to give insight into where there are gaps in that knowledge. In the chapters that follow

are results of research that fill those gaps, contributing to a better understanding of

the essential problems, and expanding our knowledge in the area of cycle structure in
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graphs.

Finally, Hamiltonicity and bipancyclicity in bipartite graphs is an area with much

research potential. Very few graph theorists have explored the question of cycle extend-

ability in the bipartite case – the exception including Beasley and Brown [12]. We will

discuss this more in the last chapter, and consider the direction future research might

take.

1.1 Notation and Terminology

In this dissertation, Bondy and Murty, Graph Theory with Applications [21] will

be used for notation and terminology not specifically defined, and a Glossary has been

furnished at the end for convenience. Only finite simple graphs are considered, with

vertex set and edge set denoted V (G) and E(G) respectively. The degree of a vertex

x will be indicated by d(x). Whereas δ(G) and ∆(G) will denote the minimum and

maximum degree of the graph G, respectively.

The shortest distance between vertices x and y is represented by dist(x, y). If x

and y lie on a cycle C, distC(x, y) indicates the shortest distance between the vertices,

traversing the cycle.

For a given vertex x of G, the neighborhood of x will be represented by N(x), the

set of all vertices adjacent to x. We will use N [x] to represent the closed neighborhood of

x, N(x)∪ {x}. Let Nk[x] ={v ∈ V (G) | d(x, v) ≤ k}. If H ⊆ G, then NH(x) represents

the neighbors of x in H. G[S] will denote the subgraph of G induced by a set of vertices

S ⊆ V (G). Hence, G[N [x]] = G[N(x)∪ {x}]. We can write this subgraph as G1(x).

Definition 1.1.

• A graph G is connected if there exists an x, y-path between every pair of vertices,

x and y.

• A component of a graph G is a maximal connected subgraph.

• A cut set is a minimal set of vertices whose deletion increases the number of

components of the graph.
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• A cut vertex is a vertex whose deletion increases the number of components of the

graph.

• A graph G is k-connected if it requires at least k vertices to increase the number

of components of G. If a graph is k-connected, the smallest cut set has cardinality

k.

• A graph G is 2-connected if it has no cut set of size 1 (i.e., no cut vertex ). This is

equivalent to saying that every vertex lies on a cycle.

Definition 1.2. We will say that a vertex x is locally connected if the subgraph induced

by its neighborhood, G[N(x)], is connected, and the graph G is locally connected if

every vertex of G is locally connected.

Definition 1.3. A graph G on n vertices is the complete graph, Kn, if all its vertices

are pairwise adjacent.

Definition 1.4. A set of vertices is independent if no two of its elements are adjacent.

Definition 1.5. A graph is bipartite, if the vertex set V (G) can be partitioned into

two independent sets, X and Y , with all the edges of the graph, E(G), having one end

vertex in the partite set X and the other in the partite set Y . We denote the bipartite

graph G = (X,Y,E). Equivalently, G contains no odd cycles. Moreover, G = (X,Y,E)

is a balanced bipartite graph if |X|=|Y |.

Definition 1.6. We denote the complete bipartite, Kn,m, where |X|= n, and |Y |= m,

and every x ∈ X is adjacent to every y ∈ Y .

Definition 1.7. A graph is a claw if it is isomorphic to the complete bipartite graph

K1,3.

Definition 1.8. A graph is Hamiltonian if it has a spanning cycle, that is, a cycle

containing all the vertices of the graph.

Definition 1.9. A graph on n vertices is pancyclic if it contains cycles of every length

t, 3 ≤ t ≤ n. A bipartite graph on 2n vertices is bipancyclic if it contains cycles of every

even length 2t, 2 ≤ t ≤ n.
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Definition 1.10. A cycle C in a graph is extendable if there exists a cycle C
� such

that V (C) ⊆ V (C �) and |V (C �)|= |V (C)|+1. A graph G on n vertices is said to be

cycle-extendable if every non-Hamiltonian cycle C on k<n vertices, is extendable. A

graph is fully cycle-extendable if it is cycle extendable and every vertex lies on a 3-cycle.

Definition 1.11. A cycle C has a chord if there is an edge between two non-consecutive

vertices on C.

Definition 1.12. A graph is chordal if every induced cycle of length greater than three

has a chord.

Definition 1.13. A vertex v is simplicial if its neighborhood, N(v), induces a complete

subgraph in G, that is, a clique (which means, all its vertices are pairwise adjacent). A

known fact is that a graph is chordal if and only if for every induced subgraph H, either

H is itself a clique, or it contains two non-adjacent simplicial vertices [48].

Definition 1.14. A perfect elimination ordering, or a simplicial elimination ordering,

on a graph, denoted PEO, is an ordering of the vertices R = v1v2. . . vn such that for

each vertex vi the neighbors of vi that follow vi in the ordering induce a clique.

For example, the chordal graph in Fig. 1.1 has a perfect elimination ordering (v1, v2, v3, v5, v4, v6).

Note that the order is important.

Figure 1.1: Perfect Elimination Ordering in a Chordal Graph

This gives us a characterization of chordal graphs.

Theorem 1.15. The following are equivalent:

1. G is chordal
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2. (Dirac [35]) For every vertex pair, x, y ∈ V (G), if S is a minimal x, y- separating

set, then S induces a complete subgraph.

3. (Buneman [25]) G has a perfect elimination ordering.

Proof. (1 ⇒ 2) If G is chordal, then any induced subgraph is chordal (a hereditary

property, Theorem 1.52), then any cycle in G has a chord, which is preserved in any

induced subgraph containing the cycle. So it is sufficient to show that any minimal

x, y-separating set S induces a clique, for any x, y ∈ V (G). Let S be a minimal

separating set, and let Ax, Ay be the two components of G − S containing x and y,

respectively. For any vertices u, v ∈ S, then since S is minimal, both u and v have edges

to both components Ax and Ay. Let Px and Py be the shortest u, v-paths in Ax and

Ay, respectively Clearly, |Px|, |Px|≥ 2, hence their union is a cycle of length ≥ 4. But G

is chordal, hence this cycle has a chord. But Px and Py are the shortest possible u, v-

paths, hence uv must be an edge in S. Since this is true for all vertex pairs, u, v ∈ S,

S must be complete.

(2 ⇒ 3) By induction on |G|, suppose for all x, y ∈ V (G), a minimal separating set

S is complete, show that G has a perfect elimination ordering. For n = 1 this is trivial.

Suppose the claim holds for all graphs on fewer than n vertices. Let G have n vertices.

If G is a clique, we’re done, since any ordering of V (G) is a perfect elimination ordering.

Otherwise, there exists a vertex pair x, y such that x, y /∈ E(G). Then let S be a minimal

x, y-separating set, and define Ax and Ay to be the components of G − S containing

x and y respectively. By the induction hypothesis, there exists a perfect elimination

ordering in Ax. In particular, there exists a vertex u ∈ Ax such that N [u] is a clique in

the induced subgraph, Ax. Since the component has no edges to the rest of the graph,

and V (S) forms a clique, this implies N [u] forms a clique in G. W.l.o.g., we can set

u = vn, and delete vn from G, leaving us with the graph G
� = G−{v} on n− 1 vertices.

Apply induction to get a perfect elimination ordering on the vertices of G�. Combine

this ordering with vn to get a perfect elimination ordering on G.
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(3 ⇒ 1) Suppose G has a perfect elimination ordering an let C be any cycle of length

greater than or equal to 4. We start deleting vertices from the ordering until we get to

a vertex v ∈ V (C). When we delete v from the ordering, its neighbors remaining in the

ordering induce a clique, so there exists an edge between two vertices on C, hence there

exists a chord.

Furthermore, Gavril [46] proved that every chordal graph has a clique-tree decom-

position. That is, a chordal graph can be decomposed into a clique-sum of complete

graphs, as is illustrated in Fig.1.2, as an example of a graph on 8 vertices:

Figure 1.2: Clique-Tree Decomposition of a Chordal Graph

In this chapter, past results in the study of cycles are provided for background to

the new results presented in Chapters 2 through 4.

These past results represent a broad survey of the literature on which the research for

this dissertation was based, and upon which my new results have expanded.

1.2 Sufficient Conditions for Hamiltonicity

We must begin with Dirac’s minimum degree condition for Hamiltonicity, which

was one of the earliest sufficiency results in this area. His somewhat labored proof can

be distilled into the simplified one provided here for contrast with a subsequent result

from which Dirac’s Theorem follows as a corollary.

Theorem 1.16. (Dirac’s Condition, 1952) [35] Given a graph G on n ≥ 3 vertices, and

d(v) ≥ n

2 for every v ∈ V (G), then G is Hamiltonian.
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Proof. Let C be a longest cycle in G. Suppose that C is not Hamiltonian. Then we can

find a path P in G such that P is disjoint from C, and is maximal in this respect. Let

u and v be the end vertices of P . Then, since d(u) ≥ n

2 , and d(v) ≥ n

2 , there must exist

vertices x and y on C, which are adjacent to u and v respectively. Moreover, a path of

C from x to y together with P and the edges joining x to u, and y to v, form a cycle

longer than C, contradicting the maximality of C.

But the foundational result in the area of Hamiltonian Graph Theory, was provided

in 1960, in Ore’s Theorem [79], in which we need the following definition:

Definition 1.17. σ2(G)=min{d(x)+d(y): x, y ∈ V (G), xy /∈ E(G)}

Ore’s Theorem is pivotal to the development of cycle theory. Later degree sum

restrictions that yield Hamiltonicity are referred to as Ore-type conditions, and Bondy

and others used Ore’s Theorem as a launching point to prove other significant results

about graphs, having to do with pancyclicity, and cycle extendability. Moreover, the

σ2-notation is now widely used, and as we will see, similar notation has arisen to study

cycles in bipartite graphs. It could be argued that the prevalence of the σ2-notation

indicates how seminal Ore’s Theorem is.

The proof of Ore’s theorem is furnished because it is elegant and easy to follow,

and introduces a proof technique unique to graph theory, which we will use later.

Theorem 1.18. (Ore, 1960) [79] If G is a graph on n ≥ 3 vertices, and σ2(G) ≥ n,

then G is Hamiltonian.

Proof. Suppose, for all pairs of non-adjacent vertices u, v, d(u)+ d(v) ≥ |G|but G is not

Hamiltonian. Let G be a maximal such counter-example. That is, the addition of any

edge will complete a Hamiltonian cycle. Let P : v1v2. . . vn be a Hamiltonian path, where

x = v1 and y=vn. If x is adjacent to any vertex vi, then y cannot be adjacent to its prede-

cessor vi−1, or it would result in a Hamiltonian cycle xv2v3. . . vi−1yvn−1vn−2vn−3. . . vix.

Hence, d(x) ≤ (n − 1) − d(y), it follows that d(x) + d(y) ≤ n − 1, contradicting the

hypothesis. Hence G must be Hamiltonian.
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Sharpness Example: The graph G in Fig. 1.3, is not Hamiltonian. Observe that the

only non-adjacent vertices lie in the independent set, K̄ (n+1)
2

, and each of these vertices

has degree (n−1)
2 . Hence G does not satisfy Ore’s condition, because σ2(G) = n− 1.

Figure 1.3: Sharpness Example: Ore’s Condition

The earlier theorem, due to Dirac, which actually pre-dates Ore’s Theorem, fol-

lows as an immediate corollary to Theorem 1.18. This was the first minimum degree

restriction, which we will refer to as Dirac’s Condition for Hamiltonicity.

Corollary 1. (Dirac’s Condition, 1952) [35] Suppose G is a graph on n ≥ 3 vertices. If

δ(G) ≥ n/2, then G is Hamiltonian.

Proof. If x and y are non-adjacent vertices, then d(x) + d(y) ≥ n/2 + n/2 ≥ n, which

by Ore’s Theorem, implies G is Hamiltonian.

In Chapter 2, we prove a new minimum degree condition for Hamiltonicity. In The-

orem 3.6, we prove that any 2-connected K1,3-free graph of order n>4, with minimum

degree greater than 2
3(n− 1) is Hamiltonian.

Bondy expanded upon Ore’s Theorem by defining the closure of a graph as follows:

Definition 1.19. The closure of G, denoted cl(G), is the graph obtained from G by

recursively joining pairs of non-adjacent vertices whose degree-sum is at least n, until

no such pair remains.

Then we get the following theorem:
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Theorem 1.20. (Bondy and Chvàtal, 1976) [20] A graph G is Hamiltonian if and only

if cl(G) is Hamiltonian.

Additionally, if the minimum degree of the graph is at least n/2, then all the vertices

are mutually adjacent, giving us the following corollary:

Corollary 1.21. If G is a graph with δ(G) ≥ n

2 , then cl(G) is complete.

In Chapter 4 these results are extended to bipartite graphs. The bipartite closure

of a bipartite graph is defined, and the bipartite version of Bondy-Chvàtal’s Theorem is

presented (see Lemma 4.4).

Geng-Hua Fan took a slightly different approach by defining a property where

if vertices having a distance 2 satisfy a degree requirement, the graph has a cycle of

specified length.

Theorem 1.22. (Geng-Hua Fan, 1984) [39] A graph G is said to have a property P (k),

for 3 ≤ k ≤ n, if for all x, y ∈G, if dist(x, y) = 2 then max{d(x), d(y)}≥ k/2. If G is

2-connected and satisfies P (k), then G has a cycle of length at least k.

Clearly, if k = n, Fan’s theorem says the graph has a cycle of length n, and hence is

Hamiltonian.

The size of the connectivity of the graph, κ(G), relative to the size of the largest

independent set, α(G), was discovered by Chvátal and Erdős to be another important

gauge of whether a graph has a spanning cycle. Later comparable theorems, involving

these measures, are referred to as Chvátal-Erdős-type conditions.

Theorem 1.23. (Chvátal-Erdős, 1972) [32] If G �= K2 and κ(G) ≥ α(G), then G is

Hamiltonian.

Proof. If α = 1, then G is complete, hence Hamiltonian. So, take κ(G) ≥ 2. Then

δ(G) ≥ κ(G) implies there exists a (δ + 1)-cycle. Let κ(G) = k. Suppose C is a longest

cycle. It must have at least k + 1 vertices. If C is not Hamiltonian, then there exists a

non-empty component H in G−C. Since G is k-connected, there are at least k distinct
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vertices in V (C) with edges to H, label these as they occur clockwise, {u1, u2,. . .uk}.

No two can be adjacent, or we could enlarge the cycle. Let us denote their successors

{u�1, u�2,. . .u�k}. None of the pairs of u�
i
can be adjacent, or we could detour through H

and enlarge C, contradicting the maximality of C. Hence, for some x ∈H, this gives us

an independent set of vertices {u�1, u�2,. . .u�k,x} of size k+1, contradicting the hypothesis

that k ≥ α(G). Hence, if κ(G) ≥ α(G), then G is Hamiltonian.

Note: this proof has been included because a similar technique will be used in later

proofs of results in Chapter 2.

In particular, in Theorem 2.32, we will present a new result, that any chordal graph

satisfying the Chvátal-Erdős condition, that κ(G) ≥ α(G) is cycle extendable.

Sharpness Example: The Peterson Graph in Fig. 1.4 does not satisfy Chvátal-

Erdős, because α(G) = 4 whereas κ(G) = 3, and the graph is not Hamiltonian (although

this is not easy to show). Another direction in Hamiltonian Graph Theory was to identify

Figure 1.4: Sharpness Examples: Chvàtal-Erdős Condition

forbidden subgraphs. The following theorem was one of many subgraph pair restrictions

(see Fig. 1.5):

Theorem 1.24. (Gould and Jacobson, 1982) [52] If G is 2-connected, {K1,3, Z2}-free,

then G is Hamiltonian. (Fig. 1.5).

Along these lines, in Chapter 2 we will present a new forbidden subgraph pair for cycle

extendability in chordal graphs (see Theorem 2.20).

Li et al. [73] gave another useful sufficient condition for Hamiltonicity, involving a
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Figure 1.5: Forbidden Subgraph Pair – Hamiltonicity

combination of forbidden subgraph and degree-sum restrictions, and toughness, which

is a parameter defined as follows:

Definition 1.25. A graph is τ -tough where τ>0, means that for every cut set S ⊆ V (G),

the graph G− S has at most |S|/τ components, that is, |S| ≥ τ · c(G− S).

As we have observed, it is necessary that a graph is 1-tough for it to have a Hamil-

tonian cycle, but that condition is not sufficient, as illustrated in Fig. 1.6.

Figure 1.6: A Graph That Is 1-Tough But Not Hamiltonian

It was believed for a while that 2-tough graphs were Hamiltonian. But this was

disproved by Bauer et al. [11]. Chvàtal made the following conjecture:

Toughness Conjecture (Chvàtal, 1973) [31] There exists some positive integer τ such

that every τ -tough graph is Hamiltonian.

Whether there is a minimum value of τ remains an open question. However, Kratsch

et al. proved that that τ = 3/2 is the smallest toughness threshold to guarantee a



18

Hamiltonian cycle for split graphs [69]. Also, Chen et al. [29] proved that every 18-

tough chordal graph is Hamiltonian.

Theorem 1.26. (Li, et al., 2002) [73] A 1-tough triangle-free graph of order n such that

d(x) + d(y) + d(z) ≥ n for every independent set of vertices {x, y, z}, is Hamiltonian.

1.2.1 Conditions for Hamiltonicity in Partite Graphs

In 1963 Moon and Moser [76] broadened results concerning Hamiltonicity to the

bipartite case. They described an Ore-type condition for which a bipartite graph would

have a spanning cycle.

Definition 1.27. If G = (X,Y,E) is a bipartite graph, then σ
2
2(G) = min{d(x)+d(y) :

xy /∈ E(G), x ∈ X, y ∈ Y }.

Theorem 1.28. (Moon and Moser, 1963) [76] Suppose G = (X,Y ) is a bipartite graph

with order 2n, and σ
2
2(G) ≥ n+ 1, then G is Hamiltonian.

Amar extended this work on bipartite graphs to find another important degree sum

condition for Hamiltonicity.

Theorem 1.29. (Amar, 1993) [3] A connected balanced bipartite graph of order 2n

satisfying the condition that for all vertex pairs x, y where dist(x, y) = 3 we have d(x)+

d(y) ≥ n+ 1, then G is Hamiltonian.

Some work has been done in studying the cycle properties of tri-partite graphs, and

in general, k-partite graphs. The following theorem is an example of a result concerning

pancyclicity in nearly balanced k-partite graphs.

Theorem 1.30. (Chen et al., 1995) [28] If G is a balanced k-partite graph of order kn

with minimum degree δ(G) greater than (k2 − 1
(k+1))n, if k is odd, or (k2 − 2

(k+2))n, if

k is even, then G is Hamiltonian.

Theorem 1.31. (Yokomura, 1998) [94] The 3-partite graph G = (V1 ∪ V2 ∪ V3, E),

where |Vi|= n, is Hamiltonian if for any two non-adjacent vertices u ∈ Vi and v ∈ Vj,

for 1 ≤ i ≤ j ≤ 3, the following condition is satisfied: |N(u)∩Vj |+ |N(v)∩Vi| ≥ n+1.
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In contrast, we will present new results on Hamiltonian cycles in bipartite graphs that

avoid specified edge sets or subgraphs (see Theorems 4.5, 4.6).

1.3 Pancyclicity Results: Degree Sum Conditions

In this section, we will see that theorems giving us sufficient conditions for Hamil-

tonicity motivate analogous theorems relating to pancyclicity. The first is an Ore-type

condition by Bondy.

Theorem 1.32. (Bondy, 1971) [18] If for all non-adjacent pairs x, y, d(x) + d(y) ≥ n,

that is, if σ2(G) ≥ n, then G is pancyclic, unless n is even and G ≡ Kn
2 ,

n
2
.

Theorem 1.33. (Schmeichel and Hakimi, 1988) [85] If there exist consecutive vertices

on a Hamiltonian cycle having degree sum at least n+ 1, then G is pancyclic.

Recall that the distance distC(x, y) on a cycle C between two vertices x and y to

be the length of the shortest x, y-path in C.

Theorem 1.34. (She-Min Zhang, 1988) [96] If there exist vertices x1, x3 on a Hamil-

tonian cycle C such that distC(x1, x3)=2, such that d(x1) + d(x3) ≥n+1, then G is

pancyclic.

Proof. (the proof is provided here to demonstrate the techniques used in obtaining pan-

cyclicity.) First, it is obvious that G contains a 3-cycle, since either x1 or x3 has

degree at least n

2 . To look for cycles of all other lengths t, 4 ≤ t ≤ n − 1, we must

consider two cases.

Case 1 ) x1x3 /∈ E(G). Then:

n+ 1 ≤ d(x1) + d(x3) =|N(x1) ∪N(x3)|+ |N(x1) ∩N(x3)|

n+ 1 ≤ (n− 2)+|N(x1) ∩N(x3)|

⇒ 3 ≤|N(x1) ∩N(x3)|.

This implies there exist distinct vertices p, q ∈ N(x1) ∩ N(x3), giving us a 4-cycle

{x1, p, x3, q, x1}.
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To see that G also contains cycles of every length t for 5 ≤ t ≤ n − 1, suppose a

cycle is missing for some t. Then G cannot contain the edge pair (x1, xk), (x3, xn+k−t),

if 4 ≤ k ≤ t− 1 (see Fig. 1.7a), or (x1, xk), (x3, xk−t+4), if t ≤ k ≤ n− 1 (see Fig. 1.7b).

Figure 1.7: Restricted Edge Pairs – Proof of Zhang’s Theorem

Then, d(x1) ≤ (n − 4) – (d(x3) − 4), if such edge pairs are restricted, giving us:

d(x1) + d(x3) ≤ n, contradicting the hypothesis.

Case 2 ) x1x3 ∈ E(G). Prove by induction on n. Base case, n = 5. We know there

must be a 3-cycle, C3 : x1x2x3x1, and by hypothesis, a 5-cycle, therefore, there exists

a cycle of length 4, C4 : x3x4x5x1x3.

Suppose the result is true for all graphs of order less than n. Let |G| = n,

and suppose G satisfies the condition that for vertices x1, x3 a distance 2 apart on a

Hamiltonian cycle C, d(x1) + d(x3) ≥ n+ 1.

Define G
� = G − x2, replacing the segment x1x2x3 of C with the edge x1x3. This

gives us a graph of order n− 1, hence induction applies, and we get cycles of all lengths

t, 3 ≤ t ≤ n− 1. Therefore, G is pancyclic.

A corollary to this theorem is a Dirac-type condition for pancyclicity:

Corollary 1.35. (Harris, 2009) [55] If G is Hamiltonian with more than n/3 vertices

of degree ≥ (n+1)
2 , then G is pancyclic.

The next theorem has to do with a graph having an (n−1)-cycle, where the vertex

not on the cycle is adjacent to at least half the vertices of the graph. Then pancyclicity

results.
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Theorem 1.36. (Haggkvist et al., 1981) [53] If G is a graph of order n≥4 has a cycle

of length (n − 1), and a vertex x not on the cycle has d(x) ≥ n

2 , then G is pancyclic.

(Also due to Benhocine, et al., [16]).

Proof. If d(x) ≥ n

2 , then x must be adjacent to at least two consecutive vertices x1, xn−1

on the (n−1)-cycle. Hence G contains a n-cycle (where the edge x1xn−1 can be replaced

by the path x1xxn−1). Also, G has a 3-cycle, x1xxn−1x1. Now suppose there is some t,

3<t ≤ n− 2, such that G has no t-cycle. Then for all i, 1 ≤ i ≤ n− 1, we cannot have

both edges xix and xi+t−2x or we would get a cycle of length t, that is, the cycle Ct:

xxiC+xi+t−2x. But there are (n− 1) of these pairs, and d(x) ≤ 1
2(n− 1), contradicting

the hypothesis. Hence G must be pancyclic.

The following important theorem examines the degree sum of the end vertices of a

Hamiltonian path.

Theorem 1.37. (Faudree et al., 1996) [40] If there exist vertices x, y at the opposite

ends of a Hamiltonian path with degree sum d(x) + d(y) ≥n+1, then G is pancyclic.

Note: Schelten and Scheimeyer [84] improved this bound to (n+13)
5 .

1.4 Pancyclicity Results: Other Conditions

Bauer and Schmeichel considered how Fan’s Condition for Hamiltonicity might

apply to pancyclicity. Like Ore’s Condition, Fan’s Condition proves to be sufficient for

more than Hamiltonicity alone, as we see in the following theorem.

Theorem 1.38. (Bauer and Schmeichel, 1990) [10] A 2-connected graph G that satisfies

Fans Condition, that for all x, y ∈ G, if dist(x, y) = 2 then max{d(x), d(y)}≥ |G|
2 , is

pancyclic, or G = Kn/2,n/2, or Kn/2,n/2 − e for some edge e, (or G is the the graph Fn,

which is a matching between Kn/2 and the vertices of a set of n/4 independent edges,

T ).
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Harris proved a useful little theorem about pancyclicity, which can be verified with

a simple inspection of the vertex degrees of the graph, and gives us some interesting

insight into the local structure of some pancyclic graphs.

Theorem 1.39. (Harris, 2009) [55] If G is Hamiltonian of order n ≥5 with a vertex

of degree n− 2, then G is pancyclic.

The next theorem, due to Bondy, gives us a minimum edge bound to guarantee a

graph is pancyclic.

Theorem 1.40. (Bondy, 1971) [18] Every Hamiltonian non-bipartite graph of order n

with at least n
2

4 edges is pancyclic.

Note: this edge condition is satisfied if δ(G) ≥ n

2 . Amar, Flandrin et al. [4], reduced

this bound to δ(G) ≥ (2n+1)
5 , if n ≥ 162.

1.5 Bipancyclicity Results: Bipartite Graphs

Now, we examine some conditions for bipancyclicity in bipartite graphs. We begin

with Schmeichel and Mitchem’s theorem which is analogous to Theorem 1.33, due to

Schmeichel and Hakimi, for ordinary graphs:

Theorem 1.41. (Schmeichel and Mitchem, 1982) [86] A Hamiltonian bipartite graph

with Hamiltonian cycle v1v2. . . v2n, where d(v1) + d(v2n) ≥ n+ 1, is bipancyclic.

In Theorem 1.29, Amar proved not only does the following condition guarantee

Hamiltonicity in a bipartite graph, but also pancyclicity.

Theorem 1.42. (Amar, 1993) [3] A connected balanced bipartite graph of order 2n

satisfying the condition that for all vertex pairs x, y where dist(x, y) = 3 implies d(x) +

d(y) ≥ n+ 1, then G is bipancyclic.

The next theorem gives us a minimum number of edges for which a bipartite graph

is guaranteed to be bipancyclic.
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Theorem 1.43. (Entringer and Schmeichel, 1988) [37] A balanced bipartite graph of

order 2n with n
2 − n+ 2 edges is bipancyclic.

Theorem 1.44. (Harris, 2009) [55] If G is bipartite with |X|=|Y |= n ≥ 4 and Hamil-

tonian cycle C, and there exists a vertex of degree n− 1, then G is bipancyclic.

1.6 Hamiltonicity and Cycle Extendability of Locally Connected Graphs

Recall, a graph being locally-connected describes the connectedness of the neigh-

borhood of any vertex in the graph (see Definition 1.2). A locally-connected graph

is more likely to have other properties such as Hamiltonicity and cycle extendability.

Moreover, if the neighborhoods of each vertex satisfy Ore’s condition – a kind of “lo-

cal Ore” behavior – the same can be said. The following theorems provide us with an

understanding of how local structure affects the global properties of a graph.

In Chapter 2, we introduce new results along these lines, presenting conditions on

local behavior that influences cycle extendability in a graph (see Theorem 2.23).

Theorem 1.45. (Chartrand and Pippert, 1974) [26] If G is connected and locally-

connected with maximum degree not greater than 4, then either G is Hamiltonian or

G ∼= K1,1,3.

Theorem 1.46. (Kikust, 1975) [68] Every connected and locally-connected 5-regular

graph is Hamiltonian.

Theorem 1.47. (Oberly and Sumner, 1979) [78] Every connected, locally-connected

K1,3-free graph is Hamiltonian.

Theorem 1.48. (Hendry, 1989) [56]: If G is connected and locally-connected with

maximum degree ∆(G) ≤5, and ∆(G) – δ(G) ≤1, then G is fully cycle-extendable.

Theorem 1.49. (Asratian and Khachatrian, 1990) [8] If G is connected and G1(x) is

an Ore graph for all x ∈ G, then G is Hamiltonian.

Theorem 1.50. (Asratian, 1995) [7] If G is connected and G1(x) is an Ore graph for

all x ∈ G, then G is fully cycle-extendable.
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1.7 Properties of Chordal Graphs

We will utilize some of the following theorems that describe important properties

of chordal graphs.

Theorem 1.51. (Buneman, 1974) [25] A graph G is chordal if and only if it admits to

a perfect elimination ordering.

In Theorem 2.34, in Chapter 2, we present a new result cycle extendability in graphs

having a special kind of perfect elimination ordering, known as a Hamiltonian elimina-

tion ordering. This new result has interesting implications to Hamiltonicity.

Theorem 1.52. Suppose G is a Hamiltonian chordal graph and x is a simplical vertex.

Then the following properties hold:

1. (West, 2000) [91] Any induced subgraph of G is chordal (chordal is an hereditary

property);

2. (Fulkerson and Gross, 1965) [45] G−{x} is a chordal graph;

3. (Abueida and Sritharan, 1980) [1] If xy is any edge incident to x, then G− xy is

chordal.

Theorem 1.53. (Balakrishnan and Paulraja, 1986) [9] A 2-connected chordal graph G

is locally connected.

The sub-classes of Hamiltonian chordal graphs which have been proven to have

the property of cycle extendability, include planar Hamiltonian chordal graphs, Hamil-

tonian interval graphs, and Hamiltonian split graphs, (which, as Bender et al proved,

encompasses almost all chordal graphs). We can generalize that split graphs are chordal

graphs whose complement is also chordal [82].

Theorem 1.54. (Bender et al., 1985) [15] Almost all chordal graphs split.

From this, it is easy to give a direct proof of the following conclusion:
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Theorem 1.55. (Abeuida and Sritharan, 2006) [1] Hamiltonian split graphs are cycle

extendable.

Proof. Suppose G = (K, I,E) is a minimal counterexample. That is, G is a minimal

graph that splits into a complete graph K and an independent set I, having some non-

Hamiltonian cycle C that does not extend. Let |G|= n. If x ∈ (K ∪ I) − V (C) is a

simplicial vertex of G, then we can define G
� = G−{x}, on fewer than n vertices, which

is still a Hamiltonian split graph, in which C does not extend. This contradicts the

minimality of G. Hence, if x is simplicial, we can assume x lies on C, or we can easily

extend the cycle. This implies that every vertex in I must lie on C, since every vertex of

I is simplicial (since for all x ∈ I, N(x) ⊆ K, which is complete). Hence, if x /∈ V (C),

we can suppose that x is not simplicial, and x /∈ I, that is, x ∈ K. But x is not simpicial

and K is complete, implies x is adjacent to some vertex y ∈ I. Since y lies on C, it lies

on a segment yz of the cycle, which implies z, x are adjacent (since N(x) is complete).

Hence C can be extended by replacing the edge yz with the path yxz.

Theorem 1.56. (Jiang, 2002) [64] Hamiltonian planar chordal graphs are cycle extend-

able.

The following two theorems proved the same result, and appeared in the same issue

of the same journal in 2006:

Theorem 1.57. (Abueida and Sritharan, [1]; Chen et al.,[27]) Any Hamiltonian interval

graph is cycle extendable.

1.8 Extendability Hasse Diagram

The preceding theorems relating to cycle extendability, give us an understanding of

the relationship among the properties of different graph classes, which can be summa-

rized by the following Hasse diagram. The Hasse diagram in Figure 1.8 summarizes the

state of the art in identifying the cycle extendability of structured classes of graphs. At

the time this thesis is written, this figure is complete, and correct as we will presently

show.
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We note that if Hendry’s conjecture were true the figure would collapse into a linear

order. We also note, however, that there are structured classes of graphs which are not

chordal and are cycle extendable, for example the triangular grid graphs discussed in

[49]. A triangular grid graph is a graph which can be drawn in the Cartesian coordinate

system with vertices at distinct coordinates which are linear combinations of the vectors

�p = (1, 0) and �q =
�
1/2,

√
3/2

�
and vertices adjacent if and only if their Euclidean

distance is equal to 1. The graph constructed by placing a vertex at each corner of a

hexagon and a vertex adjacent to each corner vertex in its center is a triangular grid

graph but is not chordal since the deletion of the central vertex leaves a 6-cycle.

HEO 
!

2-connected 

Hamiltonian 
!

{1,2}-cycle 
extendable 

{1}-cycle  
extendable 
!

chordal 
!

planar 
chordal 
!

split 
!

2-connected 
unit interval 
!

IEO 
!

Hamiltonian 
Spider intersection 

Figure 1.8: Hasse Diagram Indicating Containment Relationships Among
Structured Classes of Graphs

Claim: The Hasse diagram in Figure 1.8 is correct and all containment relation-

ships are proper.

Proof. Starting from level one, a Hamiltonian elimination ordering characterizes unit

interval graphs and hence the class of graphs with an HEO is properly contained in

the class of interval which are characterized via an IEO (see Jamison and Lascar [63]).
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Whether there is a 2-connected unit interval graph which is not a Hamiltonian interval

graph is not known and conversely. Spider intersection graphs generalize both interval

graphs and split graphs and are shown to be cycle extendable in [2]. It is well-known

that chordal graphs are the intersection graphs of subtrees of a tree (Gavril [46]) and

a spider is a tree. Planar chordal graphs which are Hamiltonian are shown to be cycle

extendable in [64], and there is no relationship between planar graphs and spider in-

tersection graphs since a K5 is a spider intersection graph, but there are planar graphs

which require two vertices having degree greater than 2 as a host tree for their inter-

section representation (see the paper by Jamison et al. on using spanning trees as the

basis of subtree representations of chordal graphs [61]).

In Chapter 2 we prove that 2-connected unit interval graphs are cycle extendable

(see Corollary to Theorem 2.23), and we conjecture that Hamiltonian chordal graphs are

{1, 2}-cycle-extendable. That {1}-cycle-extendable graphs are {1, 2}-cycle-extendable is

clear and the counterexamples of Lafond and Seamone are {1, 2}-cycle-extendable but

not {1}-cycle-extendable (see [71]). We observe that the 3-sun is 2-connected but is

not a unit interval graph. Note that The dashed edge indicates a conjecture and the

edge marked with ‘?’ indicates the relationship is not known at this time. Finally, a

sufficiently large complete bipartite graph with an unequal number of vertices in each

partite set is 2-connected but not Hamiltonian.
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CHAPTER 2

CYCLE EXTENDABILITY OF GRAPHS

2.1 Fundamentals

In 1980, Bondy [19] proved that Ore’s Condition (Theorem 1.18), not only guaran-

tees Hamiltonicity but also pancyclicity (except if G ∼= Kn
2 ,

n
2
). Furthermore, he proved

that if a graph G satisfies Ore’s Condition, then given any non-Hamiltonian cycle C,

there is a cycle C
� such that V (C) ⊆ V (C �) and |V (C �)|=|V (C)|+i, where i=1 or 2.

This introduced a new property, which later would be defined by Hendry.

Recall that, in 1990, Hendry [57] defined a non-Hamiltonian cycle C as being ex-

tendable if there exists a cycle C
� such that V (C) ⊆ V (C �) and |V (C �)|=|V (C)|+1,

and a graph G is cycle extendable if every non-Hamiltonian cycle in G can be extended.

Hendry popularized the study of cycle extendability in graphs. Observing that

chordal graphs are cycle reducible, Hendry conjectured in 1990 that all Hamiltonian

chordal graphs are cycle-extendable. This has since sparked keen interest in whether

the conjecture is true, and in their effort to prove or disprove it, a number of graph

theorists made significant strides in describing behavior of chordal graphs and furthering

our understanding of various graph classes. In 1999, Jiang [64] proved that Hamiltonian

planar chordal graphs are cycle extendable. Not only Abueida and Sritharan [1], but

Chen et al. [27], proved in 2006 that Hamiltonian interval graphs are cycle extendable,

(where interval graphs are a subclass of chordal graphs, first introduced by Seymour

Benzer in his study of genetics, and later characterized by Hajos and others).

Abueida and Sritharan also proved in the same paper that Hamiltonian split graphs
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are cycle extendable, (recall that split graphs are graphs whose vertex set can be parti-

tioned into a complete graph and an independent set). As mentioned earlier, Bender et

al. [15], proved that “almost all“ chordal graphs split. This leads us to understand that

a large class of Hamiltonian chordal graphs are in fact cycle extendable, but since re-

cently, LaFond and Seamone [71] have identified counterexamples to show that Hendrys

conjecture is not true, we know that “almost all” does not include some small subclass

of chordal graphs.

Beasley and Brown took steps toward describing the properties of chordal graphs

that are not cycle extendable:

Proposition 2.1. (Beasley and Brown, 2005) [12] Let G be a vertex-minimal Hamilto-

nian chordal graph on n vertices, with a cycle C of length k<n that is not extendable.

Then either n = k + 2, or G− C contains no edges of any Hamiltonian cycle.

From this description of what a non-cycle extendable chordal graph must look like,

Beasley and Brown introduced a more general concept of S-cycle-extendability:

Definition 2.2. Given a graph G on n vertices. Let S ⊆{1, 2,. . . ,n}. Suppose C is

a cycle of length k in G. Then C is S-extendable if there is an i ∈ S such that there

exists a cycle C
� in G with |V (C �)|=|V (C)|+i, and V (C) ⊆ V (C �). If this is true for all

non-Hamiltonian cycles in G, the graph G is said to be S-cycle-extendable.

This yields a new characterization of cycle extendable graphs:

Definition 2.3. G is cycle extendable if and only if it is {1}-cycle-extendable. That is,

G is extendable if and only if every non-Hamiltonian cycle C is {1}-extendable.

In particular, in the case of chordal graphs (as we will see in the last section of this

chapter), Arangno, Beasley, Brown conjecture that if G is a Hamiltonian chordal graph

then G is {1, 2}-cycle-extendable.

The graph in the next figure is provided by LeMond and Seamone [71] as the base

graph for their counterexample to Hendry’s conjecture. This is the graph on which they
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build examples of a subclass of chordal graphs which are not cycle-extendable.

The counterexample builds on the base graph H shown in Fig. 2.1, which has

!"

#$"

%"
&"

#'"

("

)"

*"

+"

,"

Figure 2.1: Counter-Example for Hendry’s Conjecture: Base Graph H

heavy edges, as highlighted. Onto these heavy edges, they paste a clique of arbitrary

size. So in the illustrated example, |V (H)|= 10, hence the minimum order of the vertex

set of any graph serving as a counterexample to Hendry’s conjecture, will have lower

bound of 15. It has been proved that a graph obtained from a chordal graph and a

disjoint set of complete graphs via “clique pasting”, i.e., a clique sum, is still chordal.

Moreover such a graph is Hamiltonian if the base graph is. Therefore, in the new graph

G obtained via pasting a clique of order k onto the heavy edge z1z2 of the base graph

H shown in Fig. 2.1, we have a cycle C that spans every vertex of G except z1 and z2,

that cannot be extended in a graph on n+ k − 2 vertices.

Theorem 2.4. (LaFond and Seamone, 2013) [71] For any 0<α<1, there exists a Hamil-

tonian chordal graph G with a non-extendable cycle C satisfying |V (C)
V (G) |<α.

However, consistent with Beasley and Brown’s proposition, the graphs described

by LeFond and Seamone are in fact {1, 2}-extendable (which results because if the cycle

C spans every vertex of G except z1 and z2, then C can be extended by 2 vertices, z1

and z2. Hence, LeFond and Seamone’s graphs are certainly 2-cycle-extendable.
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This section examines conditions under which non-Hamiltonian cycles in such

graphs can be extended. The following theorems arose from an investigation of Hendry’s

conjecture. Brent Thomas [88] established these theorems to lay out the base case for

proof of cycle extendability in chordal graphs, inducting on the length of the cycle.

These proofs give some insight into why a general proof has been elusive.

Theorem 2.5. [88] Every 3-cycle in a chordal Hamiltonian graph is extendable.

Proof. Let G be a graph with vertex set V (G) and edge set E(G). Notice if |V (G)|= 3

the result is trivial. Let C3 be any 3-cycle in G with u, v, w ∈ V (C3), |V (G)|≥ 4 and

let Cn be a Hamiltonian cycle in G. Since n ≥ 4, there is an edge uv of C3 that is

not an edge of Cn. Therefore there exists a cycle Ck such that uv ∈ E(Ck), k<n, and

w /∈ V (Ck). By Lemma 2.8 u and v have a common neighbor, x on Ck . Thus uxvwu

is a 4-cycle in G.

Theorem 2.6. [88] Every 4-cycle in a chordal Hamiltonian graph is extendable.

Proof. Let G be a graph with vertex set V (G) and edge set E(G). Notice if |V (G)|= 4

the result is trivial. Let C4 = uvwxu be any 4-cycle in G, |V (G)|≥ 5, and Cn be

a Hamiltonian cycle in G. Notice since G is chordal, C4 has a chord. Without loss

of generality, let uw ∈ E(G). Since n ≥ 5 there exist two vertices of C4 that do not

appear consecutively on Cn. If the vertices are adjacent then the cycle is extendable

by Lemma 2.8. Assume that the only vertices of C4 that do not appear consecutively

are non-adjacent. Since v and x are the only two vertices of C4 that are non-adjacent,

we have either vuwx or vwux is a path along Cn. Without loss of generality say vuwx

is a path on Cn. Notice since ux ∈ E(G), the Hamiltonian cycle can be reduced to a

(n− 1)-cycle. By Lemma 2.8, u and x have a common neighbor, y, on the (n− 1)-cycle.

Furthermore y �= v since vx /∈ E(G). Notice that vuyxwv is a 5-cycle in G.

These proofs give a little insight into the difficulty of verfying Hendry’s conjecture

using an inductive approach. In both the proofs of Theorem 2.1 and Theorem 2.1
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we need only consider one Hamiltonian chordal graph on 3 or 4 vertices respectively.

However in a general case there are many non-isomorphic Hamiltonian chordal graphs

to be considered. In fact although there are many characterizations of chordal graphs,

there is no known formula for computing the number of chordal graphs on n vertices.

Moreover, the proof of Theorem 2.1 shows that there may be more than one ordering

of the vertices of the cycle that must be considered for each non-isomorphic graph (see

[88]).

We will need to establish some properties of Hamiltonian chordal graphs for results

that follow in this section.

Lemma 2.7. Suppose G is a Hamiltonian chordal graph with simplicial vertex, v. Then

G−{v} is a Hamiltonian chordal graph.

Proof. Since v is simplicial, then G−{v} is chordal, by Theorem 1.52.

Suppose v is simplicial, and M = v, v2, v3,. . . vn, v is a Hamiltonian cycle of G. The

neighbors of v form a clique, hence v2vn ∈ E(G), therefore M
� = v2, v3,. . . vn, v is a

Hamiltonian cycle of G−{v}.

It is also useful to establish the following fact:

Lemma 2.8. If G is chordal and Hamiltonian, then any two adjacent vertices lie on a

3-cycle.

Proof. Given the edge xy ∈ E(G), let C be the smallest cycle containing xy. If |V (C)|≥

4, then C contains a chord, hence C must be a 3-cycle.

In the same vein, we can establish the following:

Corollary 2.9. If C is a cycle in the chordal graph G, and e ∈ E(C), the e forms a

3-cycle with a third vertex of C.

Proof. By induction on |C|: if |C|= 3, we’re done. If |C|>3, then C has a chord, f . This

divides C into two paths, one of which contains the edge, e. This path, taken with
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the chord, f , produces a shorter cycle, C �, which contains e, such that V (C �) ⊂ V (C).

Applying induction, we obtain the third vertex on C
�, hence on C.

Because of the properties of chordal graphs, we also get the next immediate result.

First, we will let x−, x+ denote the immediate predecessor and successor , respectively,

of the vertex x on a cycle C, with respect to some ordering of the vertices of C.

Lemma 2.10. If C is any cycle in a chordal graph, and x and y are consecutive vertices

on that cycle, then either x
−
y or xy

+ are edges in E(G).

We also can characterize cycle-reducibility with the following result:

Proposition 2.11. Suppose G is a graph on n vertices and C is a cycle of length ≥ 4.

Then G is chordal if and only if there exists a cycle C
� such that |V (C �)|=|V (C)|−1.

Proof. Let C be a cycle of length k where 3<k<n. Let x1, x2,. . . ,xn be a simplicial

ordering of the vertices of G. Let x = xi be the first vertex of C that is deleted, for

some 1 ≤ i ≤ n. The remaining vertices in the ordering that are neighbors of x form a

clique, in particular those neighbors that lie on C are adjacent. Hence, deleting x yields

a shorter cycle, C �, where |V (C �)|=|V (C)|−1.

Moreover, it can be observed that a Hamiltonian chordal graph must then contain

cycles of all lengths, from the 3-cycle through the cycle that spans the vertex set of

the graph. This was first pointed out by Hendry [56], and is stated in the following

proposition:

Proposition 2.12. A chordal Hamiltonian graph G on n vertices is pancyclic. In fact,

if G is chordal, we get a pancycllc ordering of the vertices of the graph.

Proof. Let C be a cycle of length k where 3<k<n. Then C has a chord, x1y1. If

distC(x1, y1) = 2, the chord forms a 3-cycle. Otherwise, the chord forms another cycle

of length at least 4, which in turn has a chord. If this does not create a 3-cycle, the
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process is repeated until a 3-cycle is obtained (since G is finite). Therefore, G contains

a 3-cycle.

Let v be a simplicial vertex on the Hamiltonian cycle of G. Delete v. Since the

neighbors of v are adjacent, this leaves a cycle on (n− 1) vertices. The chordal property

is hereditary, hence this process can be repeated until we have obtained cycles of length

l for all 3 ≤ l ≤ n. That is, each cycle Ck of length k ≥ 4 can be reduced to a cycle

Cl−1, by removing a vertex vl . This follows from the definition of chordal, and is true

for all 4 ≤ k ≤ n.

Note however, that the converse of these results is not true. The graph in Fig. 2.2

is pancyclic, but is neither chordal nor cycle-extendable.

Figure 2.2: Pancyclic Does Not Imply Chordal Nor Cycle Extendable

Since a chordal Hamiltonian graph is in fact pancyclic, as established by Proposi-

tion 2.12, we can easily reduce cycles, but it is more difficult to establish the necessary

conditions to reverse this process; that is, to build larger cycles from smaller ones,

equipped only with the basic property that the graph is chordal. Whence the period of

time over which Hendry’s conjecture has stood uncontested.

For example, Thomas [88] conjectured that if a graph has a pancyclic ordering, it

must be cycle extendable. But a counterexample to this is given in the following figure

(Fig. 2.3). To illustrate this, observe that the 3-cycle vn+1vn+2vn+3 is not extendable.

However, if the graph is also planar, that is, there exists a plane representation in

which the chords do not intersect, as lines in some drawing, then all the cycles may be

seen as sharing consecutive vertices with the Hamiltonian circuit, and we can use the
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Figure 2.3: Pancyclic Ordering Does Not Imply Cycle Extendable

chordal property to extend any cycle to include a vertex not on it. This observation was

formalized and proved by Jiang [64].

2.2 New Condition for Cycle Extendability: A Forbidden Subgraph Pair

This section explores another condition which is sufficient for a Hamiltonian chordal

graph to be cycle extendable. The main theorem of this section is analogous to the

previously discussed Hamiltonicity results involving forbidden subgraph pairs.

We will first need to establish a few facts.

Lemma 2.13. Suppose G is a Hamiltonian chordal graph on n vertices, and suppose C

is a non-Hamiltonian cycle. If v is a simplicial vertex in G not on C, then C can be

extended.

Proof. Suppose G is a minimal counter-example, that is, suppose G is a Hamiltonian

chordal graph on the fewest vertices, for which a cycle not containing a given simplicial

vertex cannot be extended. Let |V (G)| = n, let C be a non-Hamiltonian cycle, and

suppose v is a simplicial vertex such that v /∈ V (C). Abueida and Sritharan [1] proved

that any cycle of length 3 or 4 can be extended, hence we will assume 5 ≤ |V (G)| ≤ n−2.
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The graph G is chordal, therefore it has a simplicial elimination ordering of its

vertices (or, Perfect Elimination Ordering, PEO), x1, x2,. . . ,xn. Let x = xi be the first

vertex in the ordering that lies on C. Since v is a simplicial vertex not lying on C,

we know i ≥ 2. The remaining vertices in the ordering that are neighbors of x form a

clique. In particular, those neighbors of x that lie on C are adjacent. Hence deleting x

yields a shorter cycle, C �, where |V (C �)| = |V (G)| − 1. The graph G
� = G−{x} is still

Hamiltonian and chordal, with fewer than n vertices, such that the simplicial vertex v

does not lie on C
�, hence the cycle C

� can be extended in G
�, by the minimality of G.

Therefore C can be extended in G.

Given a cycle C, and a vertex v ∈ V (C), let v
+ and v

− denote the immediate

successor and predecessor of a vertex v on the cycle C. By Lemma 2.13 we can assume

if v is a simplicial vertex, it lies on C, otherwise, C can be extended. Moreover, since

v is simplicial hence all its neighbors are adjacent, then if w ∈ N(v), w must lie on C,

otherwise we can extend C by replacing the segment v
−
vv

+ with v
−
wvv

+. Therefore

every vertex in N(v) must lie on C. This yields the following corollary to Lemma 2.13:

Corollary 2.14. If C is a non-Hamiltonian cycle we wish to extend in a Hamiltonian

chordal graph G, and v is a simplicial vertex of G, we can assume v lies on C, moreover

if w ∈ N(v) then w also lies on C.

For our next theorem, we will need the following lemmas, (similar to a result for

strongly chordal graphs proved by Abueida and Sritharan [1]).

Lemma 2.15 (Re-Routing Lemma). Suppose G is chordal and uxv is a segment of

some cycle C, where w is the common neighbor of x and v on C, with N [w] ⊆ N [v].

Then there exists a cycle C
� of G such that V (C) = V (C �) and uxw is a segment of C �.

Proof. Let u, x, v occur consecutively along C, in the clockwise direction. Let z be the

immediate successor of the vertex w on C. Then C contains the segment wz. . .ux. Since

by hypothesis, N [w] ⊆ N [v] in G, v must be adjacent to z. Define A to be the segment

of C from w to v, in the counterclockwise direction (see Fig. 2.4 below). Define B to
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be the segment of C from z to x, in the clockwise direction. Then the desired cycle C
�,

contains the segments B, xw,A, vz. Since both wx and ux are segments of C �, it follows

that uxw is a segment of C �.

Figure 2.4: Segments A and B of Cycle C: Proof of Lemma 2.15

This figure shows you can re-route the cycle.

Lemma 2.16. Let G be a chordal graph and let x be a simplicial of G. Let p, q ∈ N(x),

and suppose that N [p] ⊆ N [q]. If C is a cycle with {x, p, q}⊆ V (C), then there exists a

cycle C
� with V (C) = V (C �) such that pxq is a segment of C �.

Proof. Suppose axb is a segment of C. If neither a nor b is p, apply the Re-Routing

Lemma 2.15 to C, substituting b and p for v and w, respectively. This results in the

cycle with segment axp, or pxa as applies. On the other hand, if a is not q, proceed

substituting a and q in place of v and w respectively to get C �.

The next result follows immediately:

Corollary 2.17. Let G be a chordal graph and x be a simplicial vertex of G. If there

exist vertices u, v ∈ N(x), such that N [u] ⊆ N [v], then G is Hamiltonian if and only if

G has a Hamiltonian cycle in which uxv is a segment.

The next two lemmas are necessary for the main result of this section, Theorem 2.20,

which is to establish a forbidden pair of subgraphs with respect to the cycle extendability

of chordal Hamiltonian graphs. In the first lemma we establish that the Hamiltonian
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and chordal properties are hereditary with respect to the deletion of vertices having a

necessary neighborhood condition.

Lemma 2.18. Suppose G is a Hamiltonian chordal graph with a simplicial vertex, x, and

suppose there exist vertices u, v ∈ N(x), such that N [u] ⊆ N [v]. Let S = V (G)−{x, u},

and H = G[S]. Then H is Hamiltonian and chordal.

Proof. By Theorem 1.52, an induced subgraph of a chordal graph is chordal. Therefore,

we need only show H is Hamiltonian. Take a Hamiltonian cycle in G. By Lemma 2.16,

vxu is a segment of another Hamiltonian cycle, M . Let u+ be the immediate successor

of u onM . Then vxuu+ is a segment ofM . However, N [u] ⊆ N [v], hence vu
+ ∈ E(G),

therefore we can replace the segment vxuu+ with the edge vu+, to obtain a Hamiltonian

cycle M
� in H.

In the second lemma we establish that the property of being “forbidden subgraph

free“ is hereditary with respect to the deletion of vertices having the same neighborhood

condition.

Lemma 2.19. Suppose G is a Hamiltonian chordal graph with a simplicial vertex, x,

and no induced F1 or F2 (see Fig. 2.5). Suppose there exist vertices u, v ∈ N(x), such

that N [u] ⊆ N [v]. Let S = V (G)−{x, u}, and H = G[S]. Then H has no induced F1 or

F2.

Proof. If C is a cycle in G with {x,u,v}⊆ V (C), then by Lemma 2.16 there exists a cycle

C
� with V (C) = V (C �) such that vxuq is a segment of C �. Moreover, G is Hamiltonian,

hence there exists a Hamiltonian cycle M with segment vxup. Since N [u] ⊆ N [v], it

must be that vq and vp are edges in G (since q, p ∈ N(u)).

Note that if p and q are adjacent, then C can be extended. Hence we can suppose that

pq /∈ E(G). Moreover, if x is adjacent to p, we get an extension of C either by replacing

the edge vx with vpx, or the edge xu with xpu. Hence we can suppose that xp /∈ E(G)
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Delete x and u to get S = V (G)−{x, u}, and let H = G[S]. Then we get a Hamiltonian

cycle M
� in H, using the edge vp instead of the segment vxup. Similarly, in H, we get

a cycle C
�, using the edge vq instead of the segment vxuq, such that V (C �) ⊂ V (C).

Suppose F is a subgraph of G, such that possibly F ∼= F1 or F2 in H.

Case 1 ) u, v /∈ F : then any vertex of F that is adjacent to u, is also adjacent to v, and

neighbors of the simplicial vertex x are mutually adjacent, hence deleting x and u will

not result in F ∼= F1 or F2.

Case 2 ) u, v ∈ F : then the subgraph generated by G−{x}, denoted <G−{x}>, may

result in F ∼= F1, but H =<G−{x, u}> will not result in either F ∼= F1 or F ∼= F2.

Case 3 ) u ∈ F , but v /∈ F : then neither <G−{x}> nor H =<G−{x, u}> results in

F ∼= F1 or F ∼= F2.

Case 4 ) v ∈ F , but u /∈ F : then <G−{x}> will not result in F ∼= F1 or F ∼= F2.

Recall, p is not adjacent to either x nor q. Then suppose deletion of the vertex u results

in F ∼= F1 or F ∼= F2. If there is no vertex of F , which adjacent to u, other than v

itself, this means G contained a forbidden F1 or F2, contradicting the hypothesis. On

the other hand, if a is some vertex of F , which adjacent to u, other than v, such that

deleting u results in F ∼= F2, then G must have an induced F2.

Hence H =<G−{x, u}> contains no F ∼= F1 or F ∼= F2.

Figure 2.5: Forbidden Subgraphs

Theorem 2.20. Let G be a chordal Hamiltonian graph with no induced F1 or F2. (see

Fig. 2.5) If G has a simplicial vertex x with neighbors u, v such that N [u] ⊆ N [v], then

G is cycle-extendable.
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Figure 2.6: Inducing a Forbidden Subgraph

Proof. Let G be a minimal counter-example. That is, let G be a chordal graph on the

fewest number of vertices with a Hamiltonian cycle M and no induced F1 or F2, having

a non-Hamiltonian cycle C that cannot be extended. Let |G| = n. First observe that

if x is a simplicial vertex of G, then by Lemma 2.13, x must lie on C. Moreover, if x

is simplicial, its neighbors must also lie on C, otherwise we could extend C, (since its

neighbors form a clique).

By the corollary to the preceding Lemma 2.15, w.l.o.g., vxu is a segment of the

Hamiltonian cycle M , and also of C, since N [u] ⊆ N [v]. Let vxup be a segment of M

and vxuq be a segment of C. It may be that q and p are different. Since N [u] ⊆ N [v]

in G, v must be adjacent to both p and q in G.

Let S = V (G)−{x, p}, and H = G[S]. If M � is the cycle obtained by replacing the

segment vxup with vp in M , then clearly M
� is Hamiltonian in H.

Similarly, let C
� be the cycle obtained by replacing the segment vxuq with vq in

C. It follows from Lemma 2.18 that H is a Hamiltonian chordal graph, on fewer than

n vertices, containing no F1 or F2, by Lemma 2.19, contradicting the minimality of G.

Hence C
� can be extended in G−{u, x} to a cycle C

�,�, containing some vertex

z /∈ V (C �), giving us a segment wvz on C
�,�. Suppose u is not adjacent to either w or

z in G. This would imply x is also not adjacent to either w or z, since x is simplicial in

G. Hence {u, v, w, x, z} induces an F1 if w and z are adjacent; or an F2, otherwise (see

Fig. 2.6).
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Therefore it must be that u is adjacent to w or to z. Without loss of generality,

suppose uz is an edge in G. Starting with C
�,�, replace the segment wvz with wvuz (see

Fig. 2.7a), then replace the segment wvuz with wvxuz to get an extension of C in G

(see Fig. 2.7b).

Figure 2.7: Obtaining an Extension of the Cycle

Specifically, if uz is an edge, then wvxuzqCw is an extension of C in G, whereas, if uw

is an edge, we get the cycle wuxvzqCw, which extends C.

2.3 2-Connected K1,3-Free Chordal Graphs

In this section, we will examine whether an established sufficient condition for

Hamiltonicity in chordal graphs is also sufficient for cycle extendability.

2.3.1 Background

Ore proved if a graph G has n vertices, and σ2(G) ≥ n, then G is Hamiltonian.

Then Bondy proved Ore’s condition was sufficient for pancyclicity, moreover:

Proposition 2.21. [18] If C is a non-Hamiltonian cycle in G, where |G| = n, such that

σ2(G) ≥ n, then there exists a cycle C
� in G such that V (C) ⊆ V (C �) and |V (C �)| =

|V (C)|+ 1 or |V (C)|+ 2.

In the same vein, Oberly and Sumner proved the following [78]:

Theorem 1.47 Any 2-connected locally-connected graph with no K1,3 is Hamiltonian.
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Moreover, Balakrishnan and Paulraja [9] proved that any connected chordal graph is

locally-connected, we get:

Theorem 1.53 Any 2-connected chordal graph with no K1,3 is locally-connected.

From these two results, we conclude that any Any 2-connected chordal graph with no

K1,3 is Hamiltonian.

We will expand on this result to prove that in fact this condition for Hamiltonicity is

sufficient for cycle extendability.

2.3.2 Main Results

Generalizing Ore’s Condition for Hamiltonicity, Geng-Hua Fan [39] proved in 1984

that if for all vertices x and y a distance 2 apart, the maximum degree of either x or

y is at least |G|/2, then the graph contains a Hamiltonian cycle. Bedrossian et al. [14]

broadened Fan’s Condition in 1993, to say that a 2-connected K1,3-free graph is either

a cycle or is pancyclic.

This suggested potential in the area of cycle extendability, specifically if applied to the

well-behaved class of chordal graphs. Here we will prove any 2-connected K1,3-free

chordal graph is cycle extendable by using the following lemma from Balakrishnan and

Paulraja [9]:

Lemma 2.22. Any 2-connected chordal graph G is locally connected.

Proof. G is locally connected if the induced subgraph G[N(u)] is connected for all u ∈

V (G). Suppose G is chordal and there exists a vertex u ∈ V (G) such that u1, u2 ∈

N(u) lie in distinct components of G[N(u)], that is, G[N(u)] is not connected. Then

u1u2 /∈ E(G). But G is 2-connected, implies there is a shortest u1, u2 path, P , of length

l ≥ 2. We can suppose not all the vertices of P lie in N(u). This gives us a chordless

cycle P∪{u1u, u2u}, contradicting the fact G is chordal.

Hence G must be locally connected.

Observing this, we are able to prove the main theorem of this section:
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Theorem 2.23. Any 2-connected K1,3-free chordal graph is cycle-extendable.

Proof. First, observe that G is locally connected by the preceding lemma. Let C be a

non-Hamiltonian cycle of length 3 ≤ t ≤ n − 1. G is connected. Let x be a vertex

not on C which is adjacent to some v ∈ V (C). Since G is locally connected, N(v)

is connected, therefore there exists a shortest v
+
x path P in N(v), where v

+ is the

immediate successor of v on C. Suppose that V (P )∩V (C) = ∅. Suppose v−v+ /∈ E(G):

if |V (P )| ≥ 2, then <v
−
, v, x, v

+
>is a K1,3 (see Fig. 2.8). Therefore the shortest path

must be P := xv
+, that is, xv+ must be an edge, giving us a cycle C

� of length t + 1,

with V (C) ⊂ V (C �).

Figure 2.8: A K1,3 is Induced, Provided P
+ Contains Vertices Other Than x

and v
+

Otherwise, suppose v
−
v
+ ∈ E(G), and suppose |V (P )| ≥ 2. Then there is some

internal vertex xi ∈ V (P ) adjacent to v
+. But xi ∈ N(v), since G is chordal, which

gives us the cycle extension C
� : vxiv+Cv, where C

� is a cycle of length t + 1, with

V (C) ⊂ V (C �) (see Fig. 2.9).

However, suppose V (P ) ∩ V (C) �= ∅. Let {x1, x2,. . . ,xk}=V (P ) ∩ V (C) We must

consider two cases:

Case 1 ) none of the vertices of V (P ) ∩ V (C) have immediate neighbors which lie in

N(v). For each xi ∈ V (P )∩V (C), {x+
i
, x

−
i
, xi, v} induces a K1,3 unless x+

i
x
−
i
is an edge

in G. This gives us the cycle C
� : v+x−1 x

+
1 Cx

−
k
x
+
k
v
−
Pxvv

+, where C
� contains all the

vertices of C and also v (see Fig. 2.10).
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Figure 2.9: V (P ) ∩ V (C) = ∅: the Cycle Is Extendable

Figure 2.10: V (P ) ⊂ V(C): the Cycle Is Extendable

Case 2 ) some vertices xi ∈ V (P ) ∩ V (C), have a neighbor, either x
+
i

or x
−
i

, which is

in N(v). Here, we follow P till we reach the first such vertex and form the new cycle

C
� by deleting the edges vv+, vv−, xix

−
i
(or xix

+
i
), and using the new edges vxi, v+v−,

and vx
−
i

(or vx
+
i

), to get: C � : v+Cx
−
i
vxiCv

−
v
+. Doing this for all such vertices

xi ∈ V (P ) ∩ V (C) with neighbors in N(v), gives us a cycle C
� with xi ∈ V (P ) ∩ V (C �)

having no neighbors in N(v), which brings us back to Case 1, and we get a longer cycle

containing v.

Therefore, any non-Hamiltonian cycle can be extended, that is, G is cycle extendable.
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Finally, observing that an interval graph is a chordal graph, we obtain the Balakr-

ishnan and Paulraja’s result as a corollary:

Corollary 2.24. (Balakrishnan and Paulraja, 1986) [9] Any 2-connected K1,3-free in-

terval graph is Hamiltonian.

From this, the next corollary follows immediately:

Corollary 2.25. Any 2-connected K1,3-free interval graph is cycle-extendable.

The next corollary is also immediate because unit interval graphs – being interval

graphs where all the intervals have the same length 1 – are precisely theK1,3-free interval

graphs (see Golumbic [47]).

Corollary 2.26. Any 2-connected unit interval graph is cycle-extendable.

Note: Similar results were derived earlier, as pointed out by Seamone, in a paper by

Clark, who proved that HamiltonianK1,3-free chordal graphs are cycle-extendable, using

a different proof.

2.4 The Chvátal-Erdős Condition

In 1991, Amar et al. [5] conjectured that the Chvátal-Erdős condition was sufficient

for pancyclicity. However, there is a large family of K3-free graphs for which κ(G) ≥

α(G), but G is not pancyclic. These include the complete bipartite graphs, Kr,r, and

the lexicographic product Gi[Γs], where Γs is the complement of Ks.

Jackson and Ordaz [60] conjectured the following modification:

Conjecture 2.27. Let G be a k-connected graph with independence number α<k.

Then G is pancyclic.

However, Erdős proved that if the graph is sufficiently large, the Chvátal-Erdős

condition is sufficient for pancyclicity:

Theorem 2.28. (Erdős, 1966) [38] If κ(G) ≥ α(G) and the order of G is greater than

4(α+ 1)4, then G is pancyclic.
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The Ramsey Theorem is needed in the statement of the next result pertaining to

pancyclicity of graphs satisfying the Chvátal-Erdős condition:

Theorem 2.29. (Ramsey, 1930 [81]) For every integer pair k,m ≥ 2, there exists an

integer R(k,m) such that every graph of order n ≥ R(k,m) contains a clique on k

vertices or an independent set of order m.

This allows us to state the following result due to Flandrin et al., which was published

in [43] and subsequently, again in [42]:

Theorem 2.30. (Flandrin et al., 2004) [43] Let G be a k-connected graph with inde-

pendence number α such that κ ≥ α and |G|>2R(4α,α+ 1). Then G is pancyclic.

Then, in 2012, Lee and Sudokov furnished yet another condition for which a graph

satisfying the Chvátal-Erdős condition is pancyclic:

Theorem 2.31. (Lee and Sudokov, 2012) [72] There exists an absolute constant c such

that if G is a Hamiltonian graph with n ≥ ck
7
3 vertices and κ(G) ≥ α(G), then G is

pancyclic.

So this leads to the next question, posed by David Brown [24], extending Hendry’s

conjecture, whether the Chvátal-Erdős condition implies cycle-extendability in chordal

graphs. We will consider that conjecture in the main result of this section.

2.4.1 Main Result

Recall: If a graph G has a non-Hamiltonian cycle C, and there exists a cycle C � such

that |V (C �)| = |V (C)|+1, and V (C) ⊆ V (C �), then we say C can be extended. If every

non-Hamiltonian cycle in a graph G can be extended, we say G is cycle extendable. We

know that the following Hamiltonian graphs are cycle extendable: split graphs, spider

graphs, and planar graphs. Moreover, we have proven in this chapter that 2-connected

K − 1, 3 chordal graphs and 2-connected unit interval graphs are also cycle extendable.

We have discussed a counterexample, which LeFond and Seamone introduced, proving
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Hendry’s conjecture that all Hamiltonian chordal graphs are cycle extendable is not true

for a small subclass of chordal graphs.

At the time of this dissertation, it remains an open question. This question being,

what conditions are sufficient for cycle extendability in chordal graphs? Our next result

is another of our contributions to the research in this area.

Theorem 2.32. Let G be a chordal graph on n ≥ 3 vertices satisfying the modified

Chvátal-Erdős condition, κ(G) ≥ α(G). Then G is cycle extendable.

Proof. Let C be a non-Hamiltonian cycle in G. Write κ(G) = k, then we can suppose

k ≥ 2. Clearly |V (C)| ≥ k.

G is k-connected, hence, for any vertex v ∈ V (G)−V (C), there is at least one edge from

v to C. First suppose there is some v ∈ V (G) − V (C), which is adjacent to at least k

vertices on C. Label these vertices, as they occur clockwise along C, {u1, u2,. . . ,uk}. If

|V (C)| = k, the cycle can easily be extended. If |V (C)|>k, observe the following:

1. No two of these vertices ui, ui+1 can be consecutive on the cycle, or we could

extend C, by replacing the edge between them with the path uivui+1. Therefore,

let {u+1 , u
+
2 ,. . . ,u

+
k
}, denote their immediate successors.

2. These vertices, {u+1 , u
+
2 ,. . . ,u

+
k
}, must be pairwise disjoint, or we could extend C

to obtain a longer cycle C
� : uivujC−

u
+
i
u
+
j
C

+
ui (see Fig. 2.11)

Figure 2.11: Extending the Cycle: There Are k Edges from v to C
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This gives us an independent set, {u+1 , u
+
2 ,. . .u

+
k
,v}, of size k+1, contradicting the

hypothesis that α ≤ k. Therefore, if v has at least k edges to C, for a graph satisfying

the modified Chvátal-Erdős condition, then every non-Hamiltonian cycle extends.

On the other hand, consider the case that there are k internally disjoint v, C-paths,

not all of which are edges from v to a vertex on the cycle C (that is, some paths have

length ≥ 2). Then we separate the vertices of V (C) that are adjacent to v into two sets:

Define U ={ui | vui ∈ E(G)} and for v, C-paths Pi where |Pi| ≥ 2, define W ={wi | wi ∈

Pi ∩ C}.

Then U ={u1, u2. . . ,ur}, and W ={w1, w2,. . . ,ws}, where r + s = k. By as-

sumption, the paths Pi are internally-disjoint, hence there is an independent set of

vertices {p1, p2,. . . ,ps}, where pi ∈ V (Pi), for 1 ≥ i ≥ s. Also, since the successors

of the vertices in U must be mutually disjoint (as in the preceding argument), this

gives us an independent set of vertices {u+1 , u
+
2 ,. . . ,u

+
r }, where u

+
i

is the successor of

ui on C, for 1 ≤ i ≤ r. This would result in r + s + 1 = k + 1 independent vertices,

{u+1 , u
+
2 ,. . . ,u

+
r ,. . . ,p1, p2,. . . ,ps, v}contradicting the hypothesis that k ≥ α(G).

We must now only consider the possible case that any u
+
i
equals some wi, that is,

if the successor of some vertex ui is the endpoint of another non-trivial v, C-path, Pi.

If the path has length greater than 2, the choice of pi can be made so that the vertices

remain independent in our (k+ 1)-set {u+1 , u
+
2 ,. . . ,u

+
r , p1, p2,. . . ,ps, v}. However, if such

a path contains only one internal vertex, then the vertices u+
i
and pi are no longer inde-

pendent. However, since G is chordal, the induced cycle uivpiu
+
i
ui must have a chord

(see Fig. 2.12), giving us an extension of C, namely C
�: C – uiu

+
i
+{piu+i piui}.

Hence any non-Hamiltonian cycle can be extended.

2.5 Elimination Orderings in Graphs, and {1, 2}-Cycle Extendability

In a seminal paper on the subject, Jamison and Lascar [63] defined and related

different vertex elimination schemes for graphs. In particular, we mention three here:

the perfect elimination ordering (PEO), which we already discussed as being intrinsic

to chordal graphs; the interval elimination ordering (IEO), which is characteristic of
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Figure 2.12: Successor of a v, C-edge Is the Endpoint of a v, C-Path

interval graphs (a subclass of chordal graphs); and the Hamiltonian elimination ordering

(HEO), which Jamison and Lascar showed is a special sub-type of interval elimination

ordering. We study these orderings because they characterize classes of chordal graphs,

and we have identified the Hamiltonian elimination ordering as one that guarantees cycle

extendability. This gives us another result to contribute to the open question of which

classes of chordal graphs satisfy Hendry’s conjecture.

Recall, a perfect elimination ordering (PEO) is an ordering of the vertices of a

graph R = v1v2. . . vn such that for each vertex vi, the neighbors of vi that follow vi in

the ordering induce a clique. (Note that we have also referred to this as a simplicial

elimination ordering.)

Recall that in 1974, Buneman [25] established that a graph having a PEO is chordal,

and vice versa.

In an ordering v1v2. . . vn, if vertex vi precedes vertex vj in the ordering, we write

vi<vj . That is, v1<v2, etc.

Jamison and Lascar [63] define an ordering of the vertices of a graph to be an

interval elimination ordering (IEO) if and only if for all vertices vi, vj , vk with vi<vj<vk,

if vivk ∈ E(G) then vjvk ∈ E(G). The existence of such an ordering characterizes interval

graph [63].
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Now we define the HEO, the ordering and property we show guarantees cycle

extendability.

Definition 2.33.

• A graph G has a Hamiltonian elimination ordering of its vertices, (denoted HEO),

if {v1, v2,. . . ,vn} is a perfect elimination ordering, with vi adjacent to vi+1 for all

1 ≤ i ≤ n− 1.

• A graph having a Hamiltonian elimination ordering, will be referred to as an HEO

graph.

Again, since a graph is chordal if and only if it has a PEO, every HEO graph is

chordal, and since interval graphs are chordal graphs, we have the following relationship

among the orderings, illustrated in Fig. 2.13:

Figure 2.13: Elimination Orderings in Increasing Strength

As an example, for practice with the definitions, we observe the distinction among

the orderings in the following graph [63]:

!"#" $" %"

&"

Figure 2.14: Distinquishing the Elimination Orderings

i) a, b, d, e, c is an HEO

ii) a, b, e, d, c is an IEO but not an HEO

iii) a, e, b, c, d is a PEO but not an IEO.
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Theorem 2.34. Any 2-connected graph G having an HEO is cycle extendable.

Proof. Suppose G is a 2-connected graph with a Hamiltonian elimination ordering

H ={v1, v2,. . . ,vn}. Let C be a non-Hamiltonian cycle. Suppose vk is the first ver-

tex in the ordering H, that lies on C. First, let us suppose that vk is not simplicial in

G. Apply Lemma 2.13, which gives us an extension of C.

Otherwise, if vk is simplicial, consider vk−1, the vertex preceding vk in the ordering.

By definition of an HEO, vkvk−1 ∈ E(G), hence vk−1 ∈ N(vk). But vk is simplicial, hence

the neighborhood of vk is complete, therefore vk−1v
+
k
∈ E(G), where v+

k
is the immediate

successor of vk on the cycle, giving us an extension of the cycle, C � = C−vkv
+
k
+vkvk−1v

+
k
.

(See Fig. 2.15 for an example of an HEO graph.)

Figure 2.15: Example of Theorem 2.34

Applying Theorem 2.34 recursively, we obtain a cycle that spans the vertex set of

the graph. This is stated in the following:

Corollary 2.35. A 2-connected graph having an HEO is Hamiltonian.

We present two questions, which present new or continuing lines of research. Since

every HEO is an IEO, can the vertex ordering properties give us an alternate approach

to proving that a Hamiltonian interval graph is cycle extendable? Since any chordal

graph with an HEO is cycle extendable, but not all chordal graphs are cycle extendable,

we also ask: what describes the class of chordal graphs which are cycle extendable but



52

have no HEO? or can Theorem 2.34 be made into a characterization of all 2-connected

cycle extendable graphs?

Recall, in Proposition 5.9, Beasley and Brown described the kind of chordal graphs

that would not be cycle extendable. From that description of what a non-extendable

chordal graph must look like, Beasley and Brown introduced the more general concept

of S-cycle-extendability.

From this, we obtain the following important conjecture:

Conjecture 2.36. (Arangno, Beasley, Brown, 2014) Let G be a Hamiltonian chordal

graph. Then G is {1, 2}-cycle-extendable.
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CHAPTER 3

NEW RESULTS: HAMILTONICITY

3.1 Generalizing Classical Theorems

3.1.1 Generalizing Dirac’s Condition

Shi [87] generalized Dirac’s classical theorem by proving a 2-connected graph G of

order n contains a cycle which passes through all vertices of degree ≥ n/2.

We will prove the preceding result of Shi, following a different argument, which is similar

to that used by Yamashita [93] in deriving the following result: If G is a 2-connected

graph and max{d(x) + d(y)|x, y ∈ S}≥ d for every independent set S ⊂ V (G) of order

k + 1, then G has a cycle of length at least min{d, |V (G)|}.

We will use Menger’s Theorem, and Bondy’s Lemma, stated as follows.

Theorem 3.1. (Menger, 1927) [75] A minimum x, y separating set, for any x, y ∈

V (G), equals the maximum number of disjoint x, y-paths in the graph G.

The global version of Menger’s Theorem, is that a graph is k-connected if and only if it

contains k edge-disjoint paths between any two distinct vertices (Whitney [92]).

We will also need :

Lemma 3.2. (Bondy, 1971) [17] Let G be a graph on n vertices and X ⊆ V (G). If C

is a cycle which contains as many vertices of X as possible, and xPy is a path such that

|V (xPy) ∩X|>|V (C) ∩X|, then d(x) + d(y)<n.

Now we are ready to prove our theorem:
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Theorem 3.3. Let G be a 2-connected graph on n vertices and X ⊆ V (G). If δ(x) ≥ n/2

for all x ∈ X, then there exists a cycle that spans X.

Proof. Suppose C is a cycle of G that contains as many vertices of X as possible. If

V (X) ⊆V(C), we’re done. Otherwise, suppose there is a vertex x0 ∈ X∩(V (G)−V (C)).

Let k = κ(X), k ≥ 2. Then by Menger’s Theorem, there exist k internally disjoint paths

from x0 to C. Label these paths, x0Pivi, for distinct vertices vi on C, 1 ≤ i ≤ k.

Suppose these vertices appear consecutively along C as v1, v2,. . . ,vk (k ≥ 2). Let xi be

the first vertex of X following vi on C for each i, 1 ≤ i ≤ k. Then P0,i: x0PiviC
−
xi

is an x0, xi-path such that |V (P0,i) ∩X|>|V (C) ∩X|(see Fig. 3.1). Hence, by Bondy’s

Lemma, Lemma 3.2, d(x0) + d(xi)<n. There exist k such x0, C-paths.

Figure 3.1: Generalizing Dirac’s Equation: Defining an x0, xi-Path

Also, define Pi,j : xiC
+
vjPjx0PiviC

−
xj , to be an xixj-path, for any two vertices

xi, xj ∈ X on C, for 1 ≤ i<j ≤ k, such that |V (Pi,j) ∩ X|>|V (C) ∩ X|(see Fig. 3.2).

Again, by Bondy’s Lemma, d(xi) + d(xj)<n.

Figure 3.2: Generalizing Dirac’s Equation: Defining an xi, xj-path
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This gives us d(xi) + d(xj)<n for all i, j such that 0 ≤ i<j ≤ k, contradicting the

hypothesis that d(xi) ≥ n/2 for xi ∈ X. Hence the cycle C must include all the vertices

of X.

3.1.2 Generalizing Ore’s Condition

We now generalize Ore’s Condition, Theorem 1.18, that d(x) + d(y) ≥ n for each

pair of non-adjacent vertices x, y in G implies that G is Hamiltonian. Our proof will

follow the approach used by Shi in proving a 2-connected graph G of order n contains

a cycle which passes through all vertices of degree ≥ n/2. Our proof via contradiction

will use a maximal cycle, and a minimal path.

Theorem 3.4. Let G be a 2-connected graph on n vertices. Then G contains a cycle

passing through all pair-wise non-adjacent vertices whose degree sum is at least n.

Proof. Suppose the theorem is false. Let S ={x |∃y s.t. xy /∈ E(G), d(x) + d(y) ≥ n},

and let C = a1a2. . . ak be a cycle containing as many vertices from S as possible. Denote

H = V (G) − C. Since G is 2-connected, there exists a path connecting two vertices of

C, internally disjoint from C, which contains a vertex x in S. Let P be a shortest such

path. Without loss of generality, let a1, aq ∈ V (P )∩V (C). There exists a vertex ap ∈ C

where 1<p<q, such that ap ∈ S, but for all 1<i<p, ai /∈ S.

We get the following two cases:

Case 1 ) p>2

By the minimality of P and the maximality of C, the following sets are pairwise disjoint:

NC(ap); NC(x) - {aq}; NH(ap); NH(x); {x, aq}

Therefore n ≥ dC(ap) + (dC(x)− 1) + dH(ap) + dH(x) + 2

≥ d(ap) + d(x) + 1, which implies

n ≥ n+ 1, contradiction.



56

Case 2 ) p = 2

The following sets are pairwise disjoint:

NC(ap); NC(x); NH(ap); NH(x); {x}, giving us a similar contradiction.

The graph in Fig. 3.3 provides a sharpness example, meaning that in some sense, the

result cannot be improved. As illustrated, we see that G is a 2-connected graph on n

vertices, split between a clique K = K (n−1)
2

, and an independent set S = K̄ (n+1)
2

, and

since any pair of vertices x, y in S are non-adjacent, they have degree sum d(x)+d(y)<n.

However, G does not have a cycle that contains all the vertices of S.

Figure 3.3: Sharpness Example: Generalization of Ore’s Theorem

Corollary 2. Ore’s condition for Hamiltonicity.

3.2 A New Minimum Degree Condition for Hamiltonicity

A graph G is locally connected if for every vertex v ∈ V (G), the neighborhood of

v is connected. Recall, a graph is Hamiltonian if it contains a spanning cycle.

In this paper, we will establish a sufficient condition for Hamiltonicity in 2-connected

K1,3-free graphs with a given minimum degree.

The principal result we will be using is Oberly and Sumner’s result:

Lemma 1.47 Any 2-connected locally connected K1,3-free graph is Hamiltonian [78].
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3.2.1 Fundamentals

To obtain our next result, we need to prove the following proposition of Chartrand

and Pippert [26].

Proposition 3.5. Let G be a graph of minimum degree δ(G)>2
3(n − 1). Then G is

locally connected.

Proof. Suppose δ(G)>2
3(n − 1), but there exists a vertex x whose neighborhood N(x)

is not connected. Let y be a neighbor of x in a smallest component Hy of N(x), and let

|Hy|= m1. Define m2 =|N(x)|−m1. Then deg(x) = m1 +m2.

Let k = n−(m1+m2+1). That is, let k be the number of the vertices in G−(N(x)∪{x}).

Since y is not adjacent to any vertex ofN(x) not inHy, it must be that deg(y)<n−m2−1.

But by hypothesis, deg(x) + deg(y) >2
3(n− 1) + 2

3(n− 1), and so

deg(y) >4
3(n− 1)− (m1 +m2). Hence, n−m2 − 1 >

4
3(n− 1)−m1 −m2, and so

m1 >
1
3(n− 1). But, by the choice of y, m2 ≥ m1, and therefore

m2 >
1
3(n− 1), and

k <
1
3(n− 1).

Let z ∈ N(x) − Hy, that is, a vertex in the neighborhood of x not in the component

containing y. Then deg(z) ≤ |N(x)|−m1 + k = m2 + k. Thus:

deg(y) + deg(z) ≤ (m1 + k) + (m2 + k) = (n − 1) + k <
4
3(n − 1), contradicting the

hypothesis. Therefore, it must be that G is locally connected.

3.2.2 Minimum Degree Result

Now we can prove the following theorem:

Theorem 3.6. Any 2-connected K1,3-free graph of order n>4, with minimum degree

greater than 2
3(n− 1) is Hamiltonian.
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Proof. Since we proved that any graph of order n with δ(G)>2
3(n − 1) is locally con-

nected, then by Oberly and Sumner’s lemma 1.47, the graph must be Hamiltonian.

The split graph in Fig. 3.4 illustrates this result. For example, let n = 10. Then

G is split between the clique K = K6 and the independent set S = K̄4. Note that G is

K1,3-free. Clearly, since |S|<|K|, G is Hamiltonian.

Figure 3.4: Example: Generalization of Ore’s Theorem
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CHAPTER 4

NEW RESULTS: BIPARTITE HAMILTONIAN GRAPHS

In 1962, Pósa [80] introduced a new direction in the study of Hamiltonian graphs,

by examining the conditions under which specified edges are traversed. Later, Kronk

[70] expanded on Pósa’s results, by giving conditions for which every path of length not

exceeding k ≤ n− 2, is contained in a Hamiltonian cycle of a graph G of order n.

In contrast, Harris et al. [54] studied the the conditions under which a graph has

a Hamiltonian cycle which avoids a specified set of edges. Such a graph is called “edge-

avoiding” Hamiltonian. We expand on those results by studying bipartite graphs, and

determine the conditions under which a bipartite graph has a Hamiltonian cycle which

avoids a specified set of edges.

The results in [54] were obtained mainly by applying both the Bondy-Chvàtal The-

orem (Theorem 1.20), and the concept of the closure of a graph.

Here, we define the bipartite closure of a bigraph, and prove a bipartite version of

the Bondy-Chvàtal Theorem; namely, a graph is Hamiltonian if and only if its bipartite

closure is Hamiltonian.

Our results on edge-avoiding Hamiltonicity in a bipartite graph G are obtained by

removing specified edges E
� to obtain a graph G

�, and proving the bipartite closure of

G
� is Hamiltonian. This yields a Hamiltonian cycle in G that doesn’t use any edge of

E
�, establishing “edge-avoiding” Hamiltonicity.

Note that for a bipartite graph to be Hamiltonian, its partite sets must have equal

size. That is, given G = (X,Y,E), if |X| �= |Y |, then G cannot be Hamiltonian. There-

fore, all bipartite graphs discussed here are balanced, that is, |X|=|Y |.
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4.1 Hamiltonicity in Bipartite Graphs

In 1963, Moon and Moser [76] proved that if G = (X,Y,E) is bipartite with order

2n, and σ
2
2(G) ≥ n + 1, where σ

2
2(G) = min{d(x) + d(y): xy /∈ E(G), x ∈ X, y ∈ Y },

then G is Hamiltonian.

The proof followed that used by Ore in the non-bipartite case, using a maximal

counter-example, in which a contradiction resulted from the degree requirements on the

end vertices of any given Hamiltonian path. We can use the same reasoning to prove

the bipartite case of Bondy’s famous theorem:

Lemma 4.1. Given a bipartite graph G = (X,Y,E) on 2n vertices, and d(x) + d(y) ≥

n+1 for any pair of non-adjacent vertices x ∈ X, y ∈ Y , then G is Hamiltonian if and

only if G+ xy is Hamiltonian.

Proof. (⇒) If G is Hamiltonian, then G+ xy is Hamiltonian, for any edge xy, where

x ∈ X, y ∈ Y .

(⇐) suppose G + xy is Hamiltonian. Delete xy, to obtain a graph G, which contains

a Hamiltonian path x = x1, y1, x2,. . . ,xn, yn = y. By Moon and Moser, since d(x) +

d(y) ≥ n+ 1, then G is Hamiltonian.

If we do this recursively, for all non-adjacent vertex pairs x, y, where x ∈ X, y ∈ Y ,

such that d(x) + d(y)) ≥ n+ 1, we can define the bipartite closure, bcl(G).

Definition 4.2. The bipartite closure of G = (X,Y,E), denoted bcl(G), is the graph

with vertex set V (G) obtained by iteratively adding edges between pairs of non-adjacent

vertices from opposite partite sets whose degree sum is, or becomes, at least n+1, until

no such pair exists.

Lemma 4.3. The bipartite closure of a bipartite graph G = (X,Y,E) is well-defined.

Proof. Let S = (e1, e2,. . . ,er) be a sequence of edges added to G to form bcl(G), and let

G1 = G+ {e1, e2,. . . ,er}.
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Also, suppose S
� = (f1, f2,. . . ,fs) is a different sequence of edges added to G to

form bcl(G), which yields G2 = G+ {f1, f2,. . . ,fs}. Note that if in sequence G1, the

non-adjacent vertices x and y acquire degree sum at least n+ 1, then the edge xy must

belong to the other sequence, G2, and vice versa. Therefore, since f1 can be added to

G, it must also be in G1. Assume fi is the first edge of S� omitted in S; but fi joins

vertices whose degree sum is at least n+1 and so these vertices must be adjacent in G1

as well. Therefore there is no first edge of S� omitted by S.

Next, we obtain the following bipartite version of the Bondy-Chvátal Theorem,

from which we further obtain a minimum degree condition for when the closure of a

bipartite graph is complete.

Lemma 4.4. If G = (X,Y,E) is a bipartite graph on 2n vertices, then G is Hamiltonian

if and only if bcl(G) is.

Proof. (⇒) First, suppose G is Hamiltonian. Then the addition of edges to obtain the

bipartite closure does not destroy the Hamiltonian cycle. Therefore bcl(G) is Hamilto-

nian.

(⇐) Conversely, suppose bcl(G) is Hamiltonian. Delete any edge xy. G has a Hamilto-

nian path, with non-adjacent vertices x and y having degree sum at least n+ 1, hence,

by Moon and Moser [76], bcl(G) − xy is Hamiltonian. If bcl(G) − xy is the graph G,

we are done. If not, we continue to do this recursively until we obtain the graph G.

Therefore bcl(G) is Hamiltonian implies G is.

As advertised, the following corollary is immediate.

Corollary 3. If G is a bipartite graph with minimum degree δ(G) ≥ (n+1)
2 , then bcl(G)

is a biclique.

Proof. Since δ(G) ≥ (n+1)
2 , all pairs of non-adjacent vertices in different partite sets have

degree sum at least (n+ 1), making them adjacent in the closure, hence all the vertices

of G are adjacent in bcl(G).
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4.2 Edge-Avoiding Hamiltonicity in Bipartite Graphs

Now we can consider a Hamiltonian bipartite graph in which a specified set E� of

edges, is removed. We shall establish conditions under which there remains a spanning

cycle in the graph which uses none of the edges we removed. Then the graph will be

referred to as edge-avoiding Hamiltonian.

Theorem 4.5. Let G be a balanced bipartite graph of order 2n ≥ 10, and min degree

δ(G) ≥ 3
4(n − 1). If E� is any subset of E(G) such that |E�|< (n−3)

2 , then there exists a

Hamiltonian cycle in G containing no edge from E
�.

Proof. Since δ(G) ≥ 3
4(n − 1) ≥ 1

2(n + 1) for all n ≥ 5, it is clear that G has a Hamil-

tonian cycle. But we wish to prove there exists a Hamiltonian cycle which uses no edge

of the given set E�, as long as |E�|< (n−3)
2 .

Define G� = G−E
�; by showing bcl(G�) is Hamiltonian, we can invoke the bipartite

version of Bondy-Chvàtal to establish G
� is Hamiltonian, then G is E�-avoiding Hamil-

tonian.

Let H be the subgraph induced by the edges of E�. Let V (H) denote the vertices of

H. Then |V (H)|<(n−3). However, we can improve this upper bound. G−H = (X �
, Y

�),

where V (X �) ={x ∈ V (X)−V (H)}, and V (Y �) ={y ∈ V (Y )−V (H)}. In the graph G
�,

the minimum degree of V (H) is at least 3
4(n − 1) − ∆(H), since the vertices of V (H)

are affected by the removal of the edges of E�. Whereas, the vertices in G − V (H) are

unaffected by the removal of the edges of E�, hence their minimum degree in G
� remains

3
4(n − 1). Moreover, 3

4(n − 1) ≥ (n+1)
2 , for all n ≥ 5. Therefore, G − V (H) forms a

biclique in bcl(G�), by Corollary 3 to Lemma 4.4. Let v be a vertex of maximum degree

in H, that is, deg(v) = ∆(H) <(n− 3)/2.

Then:

Given v ∈ V (H), and u ∈ G−V (H), where v and u are in opposite partite sets, we get:

dG�(v) + dG�(u) >(34(n− 1)−∆(H)) + 3
4(n− 1)

≥ (3n−3)
2 −∆(H)



63

>
(3n−3)

2 − (n−3)
2

≥ n+ 1.

Hence, by the bipartite version of Bondy-Chvàtal (Lemma 4.4), u and v are adjacent

in bcl(G�), which contains the biclique G − V (H) joined with the independent set of

vertices V (H). And, since |V (H)|≤|G − V (H)|, this implies bcl(G�) is Hamiltonian.

Therefore G
� is Hamiltonian, and G is E�-avoiding Hamiltonian, as desired.

To illustrate this result, let G be a bipartite graph on 2n vertices, where n = 5, then

the hypothesis is satisfied if δ(G) ≥ 3
4(n − 1) = 3 and the edge set removed has or-

der |E�|< (n−3)
2 = 1. But if one or more edges are removed, the graph is no longer

Hamiltonian.

4.3 F -Avoiding Hamiltonicity in Bipartite Graphs

Now we consider a Hamiltonian bipartite graph in which there exists a subgraph

isomorphic to a specified graph F , which is removed. We shall establish conditions

under which a spanning cycle remains, which uses none of the edges from the removed

subgraph, remains. Then the graph is F -avoiding Hamiltonian.

Theorem 4.6. Let G be a balanced bipartite graph of order 2n ≥ 10, and F be a bipartite

graph of order t ≤ n− 1 and max degree not greater than k. If σ2
2(G) ≥ n+ k + 1, then

G is F -avoiding Hamiltonian.

Proof. Let H ∼= F . Define G
� = G − E(H); by showing bcl(G�) is Hamiltonian, we can

invoke Bondy-Chvátal to establish G
� is Hamiltonian, then G is F -avoiding Hamiltonian.

Define G−H = (X �
, Y

�
, E

�), where E
� = E(G)−E(H), and V (X �) = (V (X)− V (H)),

and V (Y �) = (V (Y )− V (H)).

Then |G−V (H)|= 2n−t. Denote ∆(H) = k. Let v ∈ G−V (H). Hence dG�(v) = dG(v).

Let w be any vertex in G not adjacent to v, where w and v are in opposite partite sets.

Then dG�(w) ≥ dG(w)−k, since we removed at most k edges from any vertex by removing

E(H). We now have the following:
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dG�(w) + dG�(v) ≥ dG(w) + dG(v)− k

but dG(w) + dG(v) ≥ n+ k + 1, by hypothesis, and so

dG�(w) + dG�(v) ≥ n+ 1.

Thus, wv is an edge in bcl(G�).

Moreover, since this is true for every vertex in G − V (H), the vertices of G − V (H)

are mutually adjacent in bcl(G�), and they are each adjacent to every vertex in V (H).

Hence the closure of G� contains a biclique joined to an independent set S of order t.

And since t ≤ n − 1, this implies t<(2n − t), that is, |S|<|G − V (H)|, hence bcl(G�) is

Hamiltonian. By the bipartite version of Bondy-Chvtal, Lemma 4.4, this implies G
� is

Hamiltonian, therefore G is F -avoiding Hamiltonian, as desired.

As illustrated in Figure 4.1, the graph G has degree 2n = 10. The maximal F has

order 4 and max degree 2, which is a 4-cycle, marked in red. In the first bipartite graph

below, σ2
2(G) ≥ 8, satisfying the hypothesis of Theorem 4.6, we can trace a Hamiltonian

cycle, spanning the vertex set of G, while avoiding the red cycle.

In contrast, consider the second bipartite graph shown in Figure 1. Here, σ2
2(G) = 7,

which fails to satisfy the conditions of the theorem, and we discover that there is no

Hamiltonian cycle that avoids the red edges.
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Figure 4.1: Sharpness Example: F-Avoiding Hamiltonicity
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CHAPTER 5

DIRECTIONS FOR FURTHER STUDY

In this final chapter we will summarize some key findings of the previous chapters

in context of potential for further study.

5.1 Cycle Extendability

In 1974, Fleischner [44] provided an elegant proof that the square of any 2-connected

graph, G, is Hamiltonian (where G2, the square of G, is the graph on V (G) in which two

vertices are adjacent if and only if they have distance at most 2 in G). This naturally

leads to questions whether the square of a graph is pancyclic, or cycle extendable.

Secondly, Zamfirescu [95] defined a graph G to be Hamiltonian if and only if there

exists a family of cycles F={C1, C2,. . .Cn} such that:

• every vertex of G is in at least one cycle in F ;

• the intersection-like graph F
∗ is a tree, where V (F ∗)=F , and C1C2 ∈ E(F ∗) if

and only if the cycles C1, C2 share exactly one edge;

• the intersection graph Ω(F ) is a tree, where each Ci is considered a subset of

vertices of V (G)).

Using this definition of a Hamiltonian graph, what properties can be described for dif-

ferent graph classes? does this give us different methods for proving results about

pancyclicity or cycle extendability for chordal graphs, for example?

Similarly, Scheinerman [83] defined a Hamiltonian cycle in a graph G, to be a subest

F ⊂ E(G), for which:

• |F |= n;
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• every edge cut [S,S̄] contains at least 2 edges of F .

Again, we might gain new insights from this perspective, and discover conditions for

cycle structure in graphs using this alternate definition.

But most significantly, the consequences of Ore’s Condition have been seen to tie

together Hamiltonicity, pancyclicity, and cycle extendability in graphs. This is recapit-

ulated in the following:

Theorem 5.1. Let G be a graph of order n ≥3 such that σ2(G) ≥n, then:

1. (Ore) [79]: G is Hamiltonian;

2. (Bondy) [18]: G is pancyclic unless p is even and G = Kn
2 ,

n
2
;

3. (Bondy) [18]: if C is a non-Hamiltonian cycle, then there exists a cycle C
� in G

such that V (C) ⊂ V (C �) and |V (C �)|= |V (C)|+i , where i = 1 or 2.

In 1982, Schmeichel and Mitchem [86] proved that the Ore-type condition estab-

lished by Moon and Moser for Hamiltonicity in bipartite graphs, was sufficient for bi-

pancyclicity.

In 1991, Hendry [58] expanded this, to prove the same condition was also sufficient

for bi-cycle extendability. Specifically, Hendry proved if a balanced bipartite graph G

of order 2n satisfied the condition that for all non-adjacent vertices x ∈ X and y ∈ Y

such that d(x) + d(y) ≥ n + 1, then every non-Hamiltonian cycle C could be extended

(unless G is one of a class of exceptional graphs, too technical to define here, see [58]).

Hendry defined a bipartite graph to be bi-cycle extendable as follows:

Definition 5.2. A bipartite graph G = (X,Y ) is bi-cycle extendable if G contains a

cycle, and given any non-Hamiltonian cycle C, there exists a cycle C
� in G such that

V (C) ⊂ V (C �) and |V (C �)|= |V (C)|+2.

This gives us a similar summary of consequences of the Ore-type Condition for

bipartite graphs, relating Hamiltonicity, bipancyclicity, and bi-cycle extendability, as

follows:
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Theorem 5.3. Let G = (X,Y ) be a balanced bipartite graph of order 2n ≥ 4 such that

σ
2
2(G) ≥ n+ 1, then:

• G is Hamiltonian (Moon and Moser) [76]

• G is bipancyclic (if G is not one of exceptional graphs) (Schmeichel, Mitchem)

[86]

• G is bi-cycle extendable. (Hendry) [58]

In Chapter 2, we looked at new conditions for cycle extendability in graphs. This

leads us to wonder if analogous conditions also result in bi-cycle extendability in bi-

graphs.

We suggest the following conjectures.

Conjecture 5.4. Let G be a connected bipartite graph on 2n vertices with a Hamil-

tonian cycle x1, y1,. . .xn, yn, x1. If dist(xi, xj) = 2 implies max{d(xi), d(xj)}≥ (n+1)
2 ,

then:

• G is bipancyclic

• G is bi-cycle extendable.

Conjecture 5.5. Let G be a connected bipartite graph on 2n vertices with a cycle C

of length n− 2, and a vertex v /∈ V (C) such that d(v) ≥ (n+1)
2 , then G is bipancyclic.

Conjecture 5.6. Let G be a Hamiltonian bipartite graph with vertices x1 ∈ X and

yn ∈ Y on a Hamiltonian cycle x1, y1,. . .xn, yn, x1 such that d(x1) + d(yn) ≥ n + 1,

then G is bipancyclic.

Conjecture 5.7. Let G be a 2-connected bipartite graph on 2n vertices, and let S be

a subset of V (G). If d(x) + d(y) ≥ n+ 2 for all vertices x ∈ X ∩ S and y ∈ Y ∩ S such

that dist(x, y) = 3, then there is a cycle that spans S.
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5.2 Chordal Graphs

We looked at a number of theorems dealing specifically with chordal graphs, in

responding to Hendry’s question whether Hamiltonian chordal graphs were cycle ex-

tendable.

As we saw, this constituted a challenge that invigorated much research activity in

the study of cycles. In particular, a challenge to see which conditions that proved suffi-

cient for Hamiltonicity might also prove sufficient for cycle extendability, in the special

case of chordal graphs. This suggests the following conjecture:

Conjecture 5.8. Let G be a 2-connected chordal graph satisfying Fan’s Condition for

Hamiltonicity, then G is cycle extendable.

Next, we consider the bipartite case. Golumbic and Goss [48] defined a bipartite

graph to be chordal bipartite if each cycle of length greater than or equal to 6 has a

chord.

In the same manner that Jamison [62] characterized chordal graphs as graphs in

which every k-cycle is the sum of (k−2) 3-cycles, (where cycles will be viewed as sets of

edges with the sum of cycles meaning their symmetric difference). McKee [74] defined a

graph to be chordal bipartite if and only if every k-cycle is the sum of (k2 − 1) 4-cycles.

Dalhaus et al. [34] defined a chordal graph to be strongly chordal if and only if for

every k ≥ 6, every k-cycle has a 2-chord, (which is, there are two chords of the cycle,

forming a triangle with one edge of the cycle). McKee proved this is equivalent to saying

a graph is strongly chordal if and only if every k-cycle C is the sum of (k − 2) 3-cycles,

each of which contains an edge of C, and furthermore, that a graph is strongly chordal

bipartite if every k-cycle C is the sum of (k2 −1) 4-cycles, each of which contains an edge

of C (see Fig. 5.1).

Beasley and Brown observed the following [12]:

Proposition 5.9. If G is a chordal bipartite Hamiltonian graph on n vertices with a

non-extendable cycle C, and contains no 8-fans (that is, induced subgraphs consisting
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Figure 5.1: Chordal and Strongly Chordal Bipartite Graphs

of the cycle <v1, v2,. . . v8, v1> with chords v1vi for i = 1, 2. . . ,6), and if G is vertex-

minimal with respect to these properties, then |V (G)|=|V (C)|+4, or G − C contains

no 4-cycle with a 2-path in common with any Hamiltonian cycle.

With this in mind, we pose the following questions:

1. What conditions are sufficient for a chordal Hamiltonian bipartite graph to be

bi-cycle extendable?

2. What conditions guarantee a strongly chordal bipartite graph is bi-cycle extend-

able?

3. Can the results of this thesis be extended or applied to these questions, as we

believe they can?

These questions certainly provide more opportunities for further study.



71

BIBLIOGRAPHY

[1] A. Abueida and R. Sritharan. Cycle extendability and Hamiltonian cycles in chordal

graph classes. Discrete Math., 20(3):669–681, 2006.

[2] A. Abueida, R. Sritharan, and A. Busch. Hamiltonian spider intersection graphs

are cycle extendable. SIAM J. Discrete Math., 27:4:1913 – 1923, 2013.

[3] D. Amar. Applying a condition for a Hamiltonian bipartite graph to be bipancyclic.

Discrete Math., 111:19–25, 1993.

[4] D. Amar, E. Flandrin, I. Fournier, and A. Germa. Pancyclism in Hamiltonian

graphs. Discrete Math., 89(2):111–131, 1983.

[5] D. Amar, I. Fournier, and A. Germa. Pancyclism in Chvátal-Erdös graphs. Graphs
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GLOSSARY

α(G) independence number of the graph G

κ(G) connectivity of the graph G

δ(G) minimum vertex degree of G

∆(G) maximum vertex degree of G

bcl(G) the bipartite closure of G

dist(x, y) the length of the shortest xy-path in G

G1(x) G[N [x]] = G[N(x)∪{x}]

Kn complete graph on n vertices

Kn,n complete balanced bipartite graph on 2n vertices

K1,3 claw

K1,1,3 complete tripartite graph, with two partite sets of order 1, the other of order 3

|E(G)| size of the graph G

|V (G)| order of the graph G

N(x) neighborhood of a vertex, x ∈ V (G)

NH(x) neighborhood of a vertex, x ∈ H, where H is a subgraph of G

v
− immediate predecessor of a vertex v, on a path or a cycle

v
+ immediate successor of a vertex v, on a path or a cycle

σ2(G) = min{d(x) + d(y) : x, y ∈ V (G), xy /∈ E(G)}

σ
2
2(G) = min{d(x)+d(y) : xy /∈ E(G), x ∈ X, y ∈ Y }, for bipartite graphG = (X,Y,E)
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