1,438 research outputs found

    A Generalization of the Hamilton-Waterloo Problem on Complete Equipartite Graphs

    Full text link
    The Hamilton-Waterloo problem asks for which ss and rr the complete graph KnK_n can be decomposed into ss copies of a given 2-factor F1F_1 and rr copies of a given 2-factor F2F_2 (and one copy of a 1-factor if nn is even). In this paper we generalize the problem to complete equipartite graphs K(n:m)K_{(n:m)} and show that K(xyzw:m)K_{(xyzw:m)} can be decomposed into ss copies of a 2-factor consisting of cycles of length xzmxzm; and rr copies of a 2-factor consisting of cycles of length yzmyzm, whenever mm is odd, s,r1s,r\neq 1, gcd(x,z)=gcd(y,z)=1\gcd(x,z)=\gcd(y,z)=1 and xyz0(mod4)xyz\neq 0 \pmod 4. We also give some more general constructions where the cycles in a given two factor may have different lengths. We use these constructions to find solutions to the Hamilton-Waterloo problem for complete graphs

    Rainbow Hamilton cycles in random regular graphs

    Full text link
    A rainbow subgraph of an edge-coloured graph has all edges of distinct colours. A random d-regular graph with d even, and having edges coloured randomly with d/2 of each of n colours, has a rainbow Hamilton cycle with probability tending to 1 as n tends to infinity, provided d is at least 8.Comment: 16 page

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page
    corecore