8,597 research outputs found

    Hamilton cycles in quasirandom hypergraphs

    Get PDF
    We show that, for a natural notion of quasirandomness in kk-uniform hypergraphs, any quasirandom kk-uniform hypergraph on nn vertices with constant edge density and minimum vertex degree Ω(nk1)\Omega(n^{k-1}) contains a loose Hamilton cycle. We also give a construction to show that a kk-uniform hypergraph satisfying these conditions need not contain a Hamilton \ell-cycle if kk-\ell divides kk. The remaining values of \ell form an interesting open question.Comment: 18 pages. Accepted for publication in Random Structures & Algorithm

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Cycle factors and renewal theory

    Full text link
    For which values of kk does a uniformly chosen 33-regular graph GG on nn vertices typically contain n/k n/k vertex-disjoint kk-cycles (a kk-cycle factor)? To date, this has been answered for k=nk=n and for klognk \ll \log n; the former, the Hamiltonicity problem, was finally answered in the affirmative by Robinson and Wormald in 1992, while the answer in the latter case is negative since with high probability most vertices do not lie on kk-cycles. Here we settle the problem completely: the threshold for a kk-cycle factor in GG as above is κ0log2n\kappa_0 \log_2 n with κ0=[112log23]14.82\kappa_0=[1-\frac12\log_2 3]^{-1}\approx 4.82. Precisely, we prove a 2-point concentration result: if kκ0log2(2n/e)k \geq \kappa_0 \log_2(2n/e) divides nn then GG contains a kk-cycle factor w.h.p., whereas if k<κ0log2(2n/e)log2nnk<\kappa_0\log_2(2n/e)-\frac{\log^2 n}n then w.h.p. it does not. As a byproduct, we confirm the "Comb Conjecture," an old problem concerning the embedding of certain spanning trees in the random graph G(n,p)G(n,p). The proof follows the small subgraph conditioning framework, but the associated second moment analysis here is far more delicate than in any earlier use of this method and involves several novel features, among them a sharp estimate for tail probabilities in renewal processes without replacement which may be of independent interest.Comment: 45 page

    Bounded colorings of multipartite graphs and hypergraphs

    Full text link
    Let cc be an edge-coloring of the complete nn-vertex graph KnK_n. The problem of finding properly colored and rainbow Hamilton cycles in cc was initiated in 1976 by Bollob\'as and Erd\H os and has been extensively studied since then. Recently it was extended to the hypergraph setting by Dudek, Frieze and Ruci\'nski. We generalize these results, giving sufficient local (resp. global) restrictions on the colorings which guarantee a properly colored (resp. rainbow) copy of a given hypergraph GG. We also study multipartite analogues of these questions. We give (up to a constant factor) optimal sufficient conditions for a coloring cc of the complete balanced mm-partite graph to contain a properly colored or rainbow copy of a given graph GG with maximum degree Δ\Delta. Our bounds exhibit a surprising transition in the rate of growth, showing that the problem is fundamentally different in the regimes Δm\Delta \gg m and Δm\Delta \ll m Our main tool is the framework of Lu and Sz\'ekely for the space of random bijections, which we extend to product spaces

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of 02πicos(φki)dφ\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers θi\theta_i, making (Adiag(θi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the P\neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure
    corecore