18,016 research outputs found

    Hamilton Cycles in Random Graphs with a Fixed Degree Sequence

    Full text link

    On covering expander graphs by Hamilton cycles

    Full text link
    The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ\Delta satisfies some basic expansion properties and contains a family of (1o(1))Δ/2(1-o(1))\Delta/2 edge disjoint Hamilton cycles, then there also exists a covering of its edges by (1+o(1))Δ/2(1+o(1))\Delta/2 Hamilton cycles. This implies that for every α>0\alpha >0 and every pnα1p \geq n^{\alpha-1} there exists a covering of all edges of G(n,p)G(n,p) by (1+o(1))np/2(1+o(1))np/2 Hamilton cycles asymptotically almost surely, which is nearly optimal.Comment: 19 pages. arXiv admin note: some text overlap with arXiv:some math/061275

    Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs

    Full text link
    P\'osa's theorem states that any graph GG whose degree sequence d1dnd_1 \le \ldots \le d_n satisfies dii+1d_i \ge i+1 for all i<n/2i < n/2 has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs GG of random graphs, i.e. we prove a `resilience version' of P\'osa's theorem: if pnClognpn \ge C \log n and the ii-th vertex degree (ordered increasingly) of GGn,pG \subseteq G_{n,p} is at least (i+o(n))p(i+o(n))p for all i<n/2i<n/2, then GG has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac's theorem obtained by Lee and Sudakov. Chv\'atal's theorem generalises P\'osa's theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chv\'atal's theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of Gn,pG_{n,p} which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.Comment: To appear in the Electronic Journal of Combinatorics. This version corrects a couple of typo

    Dirac's theorem for random regular graphs

    Get PDF
    We prove a `resilience' version of Dirac's theorem in the setting of random regular graphs. More precisely, we show that, whenever dd is sufficiently large compared to ε>0\varepsilon>0, a.a.s. the following holds: let GG' be any subgraph of the random nn-vertex dd-regular graph Gn,dG_{n,d} with minimum degree at least (1/2+ε)d(1/2+\varepsilon)d. Then GG' is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly, the condition that dd is large cannot be omitted, and secondly, the minimum degree bound cannot be improved.Comment: Final accepted version, to appear in Combinatorics, Probability & Computin

    Packing Hamilton Cycles Online

    Full text link
    It is known that w.h.p. the hitting time τ2σ\tau_{2\sigma} for the random graph process to have minimum degree 2σ2\sigma coincides with the hitting time for σ\sigma edge disjoint Hamilton cycles. In this paper we prove an online version of this property. We show that, for a fixed integer σ2\sigma\geq 2, if random edges of KnK_n are presented one by one then w.h.p. it is possible to color the edges online with σ\sigma colors so that at time τ2σ\tau_{2\sigma}, each color class is Hamiltonian.Comment: Minor change

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio
    corecore