18,694 research outputs found

    Approximate Hamilton decompositions of robustly expanding regular digraphs

    Get PDF
    We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r-o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the `robust' outneighbourhood of S is a little larger than S. This generalises a result of K\"uhn, Osthus and Treglown on approximate Hamilton decompositions of dense regular oriented graphs. It also generalises a result of Frieze and Krivelevich on approximate Hamilton decompositions of quasirandom (di)graphs. In turn, our result is used as a tool by K\"uhn and Osthus to prove that any sufficiently large r-regular digraph G which has linear degree and is a robust outexpander even has a Hamilton decomposition.Comment: Final version, published in SIAM Journal Discrete Mathematics. 44 pages, 2 figure

    A Dirac type result on Hamilton cycles in oriented graphs

    Full text link
    We show that for each \alpha>0 every sufficiently large oriented graph G with \delta^+(G),\delta^-(G)\ge 3|G|/8+ \alpha |G| contains a Hamilton cycle. This gives an approximate solution to a problem of Thomassen. In fact, we prove the stronger result that G is still Hamiltonian if \delta(G)+\delta^+(G)+\delta^-(G)\geq 3|G|/2 + \alpha |G|. Up to the term \alpha |G| this confirms a conjecture of H\"aggkvist. We also prove an Ore-type theorem for oriented graphs.Comment: Added an Ore-type resul

    Packing, counting and covering Hamilton cycles in random directed graphs

    Get PDF
    A Hamilton cycle in a digraph is a cycle that passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this is that there is no general tool for finding Hamilton cycles in directed graphs comparable to the so-called Posá ‘rotation-extension’ technique for the undirected analogue. Let D(n, p) denote the random digraph on vertex set [n], obtained by adding each directed edge independently with probability p. Here we present a general and a very simple method, using known results, to attack problems of packing and counting Hamilton cycles in random directed graphs, for every edge-probability p > logC(n)/n. Our results are asymptotically optimal with respect to all parameters and apply equally well to the undirected case

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Hamilton decompositions of regular tournaments

    Full text link
    We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \eta>0 every regular tournament G of sufficiently large order n contains at least (1/2-\eta)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.Comment: 38 pages, 2 figures. Added section sketching how we can extend our main result. To appear in the Proceedings of the LM
    • …
    corecore