22 research outputs found

    Hot new directions for quasi-Monte Carlo research in step with applications

    Full text link
    This article provides an overview of some interfaces between the theory of quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC theoretical settings: first order QMC methods in the unit cube [0,1]s[0,1]^s and in Rs\mathbb{R}^s, and higher order QMC methods in the unit cube. One important feature is that their error bounds can be independent of the dimension ss under appropriate conditions on the function spaces. Another important feature is that good parameters for these QMC methods can be obtained by fast efficient algorithms even when ss is large. We outline three different applications and explain how they can tap into the different QMC theory. We also discuss three cost saving strategies that can be combined with QMC in these applications. Many of these recent QMC theory and methods are developed not in isolation, but in close connection with applications

    Combining Normalizing Flows and Quasi-Monte Carlo

    Full text link
    Recent advances in machine learning have led to the development of new methods for enhancing Monte Carlo methods such as Markov chain Monte Carlo (MCMC) and importance sampling (IS). One such method is normalizing flows, which use a neural network to approximate a distribution by evaluating it pointwise. Normalizing flows have been shown to improve the performance of MCMC and IS. On the other side, (randomized) quasi-Monte Carlo methods are used to perform numerical integration. They replace the random sampling of Monte Carlo by a sequence which cover the hypercube more uniformly, resulting in better convergence rates for the error that plain Monte Carlo. In this work, we combine these two methods by using quasi-Monte Carlo to sample the initial distribution that is transported by the flow. We demonstrate through numerical experiments that this combination can lead to an estimator with significantly lower variance than if the flow was sampled with a classic Monte Carlo

    Fully Parallel Hyperparameter Search: Reshaped Space-Filling

    Full text link
    Space-filling designs such as scrambled-Hammersley, Latin Hypercube Sampling and Jittered Sampling have been proposed for fully parallel hyperparameter search, and were shown to be more effective than random or grid search. In this paper, we show that these designs only improve over random search by a constant factor. In contrast, we introduce a new approach based on reshaping the search distribution, which leads to substantial gains over random search, both theoretically and empirically. We propose two flavors of reshaping. First, when the distribution of the optimum is some known P0P_0, we propose Recentering, which uses as search distribution a modified version of P0P_0 tightened closer to the center of the domain, in a dimension-dependent and budget-dependent manner. Second, we show that in a wide range of experiments with P0P_0 unknown, using a proposed Cauchy transformation, which simultaneously has a heavier tail (for unbounded hyperparameters) and is closer to the boundaries (for bounded hyperparameters), leads to improved performances. Besides artificial experiments and simple real world tests on clustering or Salmon mappings, we check our proposed methods on expensive artificial intelligence tasks such as attend/infer/repeat, video next frame segmentation forecasting and progressive generative adversarial networks

    On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion

    Get PDF
    This article is dedicated to the computation of the moments of the solution to elliptic partial differential equations with random, log-normally distributed diffusion coefficients by the quasi-Monte Carlo method. Our main result is that the convergence rate of the quasi-Monte Carlo method based on the Halton sequence for the moment computation depends only linearly on the dimensionality of the stochastic input parameters. Especially, we attain this rather mild dependence on the stochastic dimensionality without any randomization of the quasi-Monte Carlo method under consideration. For the proof of the main result, we require related regularity estimates for the solution and its powers. These estimates are also provided here. Numerical experiments are given to validate the theoretical findings. This article is dedicated to the computation of the moments of the solution to elliptic partial differential equations with random, log-normally distributed diffusion coefficients by the quasi-Monte Carlo method. Our main result is that the convergence rate of the quasi-Monte Carlo method based on the Halton sequence for the moment computation depends only linearly on the dimensionality of the stochastic input parameters. Especially, we attain this rather mild dependence on the stochastic dimensionality without any randomization of the quasi-Monte Carlo method under consideration. For the proof of the main result, we require related regularity estimates for the solution and its powers. These estimates are also provided here. Numerical experiments are given to validate the theoretical findings

    Nonasymptotic Convergence Rate of Quasi-Monte Carlo: Applications to Linear Elliptic PDEs with Lognormal Coefficients and Importance Samplings

    Full text link
    This study analyzes the nonasymptotic convergence behavior of the quasi-Monte Carlo (QMC) method with applications to linear elliptic partial differential equations (PDEs) with lognormal coefficients. Building upon the error analysis presented in (Owen, 2006), we derive a nonasymptotic convergence estimate depending on the specific integrands, the input dimensionality, and the finite number of samples used in the QMC quadrature. We discuss the effects of the variance and dimensionality of the input random variable. Then, we apply the QMC method with importance sampling (IS) to approximate deterministic, real-valued, bounded linear functionals that depend on the solution of a linear elliptic PDE with a lognormal diffusivity coefficient in bounded domains of Rd\mathbb{R}^d, where the random coefficient is modeled as a stationary Gaussian random field parameterized by the trigonometric and wavelet-type basis. We propose two types of IS distributions, analyze their effects on the QMC convergence rate, and observe the improvements
    corecore