1,270 research outputs found

    Computer-assisted animation creation techniques for hair animation and shade, highlight, and shadow

    Get PDF
    制度:新 ; 報告番号:甲3062号 ; 学位の種類:博士(工学) ; 授与年月日:2010/2/25 ; 早大学位記番号:新532

    Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss

    Full text link
    We devise a cascade GAN approach to generate talking face video, which is robust to different face shapes, view angles, facial characteristics, and noisy audio conditions. Instead of learning a direct mapping from audio to video frames, we propose first to transfer audio to high-level structure, i.e., the facial landmarks, and then to generate video frames conditioned on the landmarks. Compared to a direct audio-to-image approach, our cascade approach avoids fitting spurious correlations between audiovisual signals that are irrelevant to the speech content. We, humans, are sensitive to temporal discontinuities and subtle artifacts in video. To avoid those pixel jittering problems and to enforce the network to focus on audiovisual-correlated regions, we propose a novel dynamically adjustable pixel-wise loss with an attention mechanism. Furthermore, to generate a sharper image with well-synchronized facial movements, we propose a novel regression-based discriminator structure, which considers sequence-level information along with frame-level information. Thoughtful experiments on several datasets and real-world samples demonstrate significantly better results obtained by our method than the state-of-the-art methods in both quantitative and qualitative comparisons

    MoSculp: Interactive Visualization of Shape and Time

    Full text link
    We present a system that allows users to visualize complex human motion via 3D motion sculptures---a representation that conveys the 3D structure swept by a human body as it moves through space. Given an input video, our system computes the motion sculptures and provides a user interface for rendering it in different styles, including the options to insert the sculpture back into the original video, render it in a synthetic scene or physically print it. To provide this end-to-end workflow, we introduce an algorithm that estimates that human's 3D geometry over time from a set of 2D images and develop a 3D-aware image-based rendering approach that embeds the sculpture back into the scene. By automating the process, our system takes motion sculpture creation out of the realm of professional artists, and makes it applicable to a wide range of existing video material. By providing viewers with 3D information, motion sculptures reveal space-time motion information that is difficult to perceive with the naked eye, and allow viewers to interpret how different parts of the object interact over time. We validate the effectiveness of this approach with user studies, finding that our motion sculpture visualizations are significantly more informative about motion than existing stroboscopic and space-time visualization methods.Comment: UIST 2018. Project page: http://mosculp.csail.mit.edu

    Drawing from motion capture : developing visual languages of animation

    Get PDF
    The work presented in this thesis aims to explore novel approaches of combining motion capture with drawing and 3D animation. As the art form of animation matures, possibilities of hybrid techniques become more feasible, and crosses between traditional and digital media provide new opportunities for artistic expression. 3D computer animation is used for its keyframing and rendering advancements, that result in complex pipelines where different areas of technical and artistic specialists contribute to the end result. Motion capture is mostly used for realistic animation, more often than not for live-action filmmaking, as a visual effect. Realistic animated films depend on retargeting techniques, designed to preserve actors performances with a high degree of accuracy. In this thesis, we investigate alternative production methods that do not depend on retargeting, and provide animators with greater options for experimentation and expressivity. As motion capture data is a great source for naturalistic movements, we aim to combine it with interactive methods such as digital sculpting and 3D drawing. As drawing is predominately used in preproduction, in both the case of realistic animation and visual effects, we embed it instead to alternative production methods, where artists can benefit from improvisation and expression, while emerging in a three-dimensional environment. Additionally, we apply these alternative methods for the visual development of animation, where they become relevant for the creation of specific visual languages that can be used to articulate concrete ideas for storytelling in animation

    THE REALISM OF ALGORITHMIC HUMAN FIGURES A Study of Selected Examples 1964 to 2001

    Get PDF
    It is more than forty years since the first wireframe images of the Boeing Man revealed a stylized hu-man pilot in a simulated pilot's cabin. Since then, it has almost become standard to include scenes in Hollywood movies which incorporate virtual human actors. A trait particularly recognizable in the games industry world-wide is the eagerness to render athletic muscular young men, and young women with hour-glass body-shapes, to traverse dangerous cyberworlds as invincible heroic figures. Tremendous efforts in algorithmic modeling, animation and rendering are spent to produce a realistic and believable appearance of these algorithmic humans. This thesis develops two main strands of research by the interpreting a selection of examples. Firstly, in the computer graphics context, over the forty years, it documents the development of the creation of the naturalistic appearance of images (usually called photorealism ). In particular, it de-scribes and reviews the impact of key algorithms in the course of the journey of the algorithmic human figures towards realism . Secondly, taking a historical perspective, this work provides an analysis of computer graphics in relation to the concept of realism. A comparison of realistic images of human figures throughout history with their algorithmically-generated counterparts allows us to see that computer graphics has both learned from previous and contemporary art movements such as photorealism but also taken out-of-context elements, symbols and properties from these art movements with a questionable naivety. Therefore, this work also offers a critique of the justification of the use of their typical conceptualization in computer graphics. Although the astounding technical achievements in the field of algorithmically-generated human figures are paralleled by an equally astounding disregard for the history of visual culture, from the beginning 1964 till the breakthrough 2001, in the period of the digital information processing machine, a new approach has emerged to meet the apparently incessant desire of humans to create artificial counterparts of themselves. Conversely, the theories of traditional realism have to be extended to include new problems that those active algorithmic human figures present

    Pictonaut: movie cartoonization using 3D human pose estimation and GANs

    Get PDF
    This article describes Pictonaut, a novel method to automatically synthetise animated shots from motion picture footage. Its results are editable (backgrounds, characters, lighting, etc.) with conventional 3D software, and they have the finish of professional 2D animation. Rather than addressing the challenge solely as an image translation problem, a hybrid approach combining multi-person 3D human pose estimation and GANs is taken. Sub-sampled video frames are processed with OpenPose and SMPLify-X to obtain the 3D parameters of the pose (body, hands and face expression) of all depicted characters. The captured parameters are retargeted into manually selected 3D models, cel shaded to mimic the style of a 2D cartoon. The results of sub-sampled frames are interpolated to generate a complete and smooth motion for all the characters. The background is cartoonized with a GAN. Qualitative evaluation shows that the approach is feasible, and a small dataset of synthetised shots obtained from real movie scenes is provided.This work is partially supported by the Spanish Ministry of Science and Innovation under contract PID2019-107255GB, and by the SGR programme 2017-SGR-1414 of the Catalan Government.Peer ReviewedPostprint (published version

    Thokolosi

    Get PDF
    The legend or myth of the malevolent spirit known as Thokolosi has long been known among my people. Some people have even been known to take measures to protect themselves from attacks by Thokolosi by raising their beds on bricks to prevent the spirit attacking them at night. I have always felt that this legend was ripe with possibilities for the animation medium and having loved the idea of Thokolosi, I felt it was a good time to attempt to make a film about it. This was also a way for me to introduce a small piece of my culture to an American audience. The paper explains how I found new ways to do things in order to achieve the look I wanted for the film. For example, the paper examines how I managed to create eyes in such a way that they were as emotive as possible. The film began with much more realistic character designs than the ones used in the film. The paper explores the reasoning behind my decision to change to a cartoon-like style and remodel the characters. The paper outlines the other challenges faced and the solutions used to overcome them
    corecore