1,229 research outputs found
Polymeric routes to silicon carbide and silicon oxycarbide CMC
An overview of two approaches to the formation of ceramic composite matrices from polymeric precursors is presented. Copolymerization of alkyl- and alkenylsilanes (RSiH3) represents a new precursor system for the production of Beta-SiC on pyrolysis, with copolymer composition controlling polymer structure, char yield, and ceramic stoichiometry and morphology. Polysilsesquioxanes which are synthesized readily and can be handled in air serve as precursors to Si-C-O ceramics. Copolymers of phenyl and methyl silsesquioxanes display rheological properties favorable for composite fabrication; these can be tailored by control of pH, water/methoxy ratio and copolymer composition. Composites obtained from these utilize a carbon coated, eight harness satin weave Nicalon cloth reinforcement. The material exhibits nonlinear stress-strain behavior in tension
Poly(dimethylsiloxane)-poly(ethyleneoxide)-heparin block copolymers. I. Synthesis and characterization
Amphiphilic block copolymers containing poly(dimethylsiloxane), poly(ethylene oxide), and heparin (PDMS-PEO-Hep) have been prepared via a series of coupling reactions using functionalized prepolymers, diisocyanates, and derivatized heparins. All intermediate steps of the synthesis yield quantifiable products with reactive end-groups, while the final products demonstrate bioactive, covalently bound heparin moieties. Due to the solvent systems required, commercial sodium heparin was converted to its benzyltrimethyl ammonium salt to enhance its solubility. The same procedure was applied to heparin degraded by nitrous acid in order to covalently couple it in solutions with the semitelechelic copolymers. As might be expected, this derivatization reduces the apparent bioactivity of the heparin. However, preliminary findings suggest that the bioactivity can be restored by reforming the heparin sodium salt
Anomalous reaction of an aryl silane with Co₂ (CO)₂; characterisation of Me ₂NC₆H₄Si[Co(CO)₄][OCCo₃(CO)₉]₂
Reaction of Me₂NC₆H₄SiH₃ with Co₂(CO)₈ gave Me₂NC₆H₄Si[Co(CO)₄][OCCo₃(CO)₉]₂ which was shown to have one –Co(CO)₄ group and two –OCCo₃(CO)₉ cluster units bonded to the silicon atom
Carbon-Based Frustrated Lewis Pairs
The use of FLPs offers a new and versatile strategy to activate small molecules such as H2, CO2, acetylenes, disulfides, olefins, and nitrogen oxides. This chapter describes the recent advances reported on the design and reactivity of new frustrated systems constituted by at least one carbon-based partner
Recent Developments in the Main Group Element Chemistry (SYNTHETIC ORGANIC CHEMISTRY-Synthetic Design)
Some recent advances in the main group element chemistry, especially in the organosilicon chemistry and the organoselenium chemistry, are described herein as follows: (1) Asymmetric intramolecular hydrosilation yielding an optically pure spirosilane with axial chirality, (2) high electron-transporting abilities of new silole p-conjugated compounds, and (3) effective steric protection of the selenium atom of the episelenonium ion intermediate
Critical fluctuations and random-anisotropy glass transition in nematic elastomers
We carry out a detailed deuterium NMR study of local nematic ordering in
polydomain nematic elastomers. This system has a close analogy to the
random-anisotropy spin glass. We find that, in spite of the quadrupolar nematic
symmetry in 3-dimensions requiring a first-order transition, the order
parameter in the quenched ``nematic glass'' emerges via a continuous phase
transition. In addition, by a careful analysis of the NMR line shape, we deduce
that the local director fluctuations grow in a critical manner around the
transition point. This could be the experimental evidence for the Aizenman-Wehr
theorem about the quenched impurities changing the order of discontinuous
transition
Photonic gaps in cholesteric elastomers under deformation
Cholesteric liquid crystal elastomers have interesting and potentially very
useful photonic properties. In an ideal monodomain configuration of these
materials, one finds a Bragg-reflection of light in a narrow wavelength range
and a particular circular polarization. This is due to the periodic structure
of the material along one dimension. In many practical cases, the cholesteric
rubber possesses a sufficient degree of quenched disorder, which makes the
selective reflection broadband. We investigate experimentally the problem of
how the transmittance of light is affected by mechanical deformation of the
elastomer, and the relation to changes in liquid crystalline structure. We
explore a series of samples which have been synthesized with photonic stop-gaps
across the visible range. This allows us to compare results with detailed
theoretical predictions regarding the evolution of stop-gaps in cholesteric
elastomers
Effects of Hydrogen Bonding and Molecular Chain Flexibility of Substituted n-Alkyldimethylsilanes On Impact Ice Adhesion Shear Strength
The effects of hydrogen bonding and molecular flexibility upon ice adhesion shear strength were investigated using aluminum substrates coated with substituted n-alkyldimethylalkoxysilanes. The location of the chemical group substitution was on the opposing end of the linear n-alkyl chain with respect to silicon. Three hydrogen-bonding characteristics were evaluated: 1) non-hydrogen bonding, 2) donor/acceptor, and 3) acceptor. Varying the length of the n-alkyl chain provided an assessment of molecular chain flexibility. Coated and uncoated aluminum surfaces were characterized by receding water contact angle and surface roughness. Ice adhesion shear strength was determined in the Adverse Environment Rotor Test Stand facility from -16 to -8C that simulated aircraft in-flight icing conditions within the FAR Part 25/29 Appendix C icing envelope. Surface roughness of the coatings was similar allowing for comparison of the test results. An adhesion reduction factor, based on the ice adhesion shear strength data with respect to uncoated aluminum obtained at the same temperature, was calculated to compare the data. The results revealed complex interactions with impacting supercooled water droplets that were interdependent upon ice accretion temperature, surface energy characteristics of water and ice, hydrogen bonding characteristic of the substituent, and length of the n-alkyl chain. To aid in explaining the results, 1) changes in the surface energy component (i.e., non-polar and polar) values that water undergoes during its phase change from liquid to solid that arise from the freezing of impacting supercooled water droplets on the surface depended upon the temperature during accretion were taken into account and 2) the physical properties (i.e., water solubility and melting point) of small compounds analogous to the substituted n-alkyldimethylalkoxysilanes used in this study were compared
Intact sublimation of silicon nanocrystals evidenced via HREM imaging and EELS in a dedicated STEM
Silicon nano crystals (NCs) have attracted considerable interest for possible uses in optoelectronics 1 As the particle size decreases the properties of NCs become increasingly sensitive to the surface termination. 2, 3 Monolayer chemistries 4-10 have been exploited to control the physicochemical properties. NCs are often prepared by vapour-phase deposition techniques; using these they can be conveniently analysed via gas phase analysis techniques, such as mass spectrometry. This cannot be employed, however, if NCs are not synthesized in the gas phase. Here we present a STEM study of undecyl-capped SiNCs, evaporated intact upon heating in ultrahigh vacuum at 200°C and collected on a variety of solid substrates, including carbon-coated TEM grids. The BF- and HAADF lattice images confirm that the particles have a crystalline core with Si-lattice spacings. The presence of Si in the core is also confirmed by Si-L edge EELS, which reveals furthermore the presence of a surface oxide. © 2008 IOP Publishing Ltd
- …
