46,247 research outputs found

    The Hubble Ultra Deep Field

    Get PDF
    This paper presents the Hubble Ultra Deep Field (HUDF), a one million second exposure of an 11 square minute-of-arc region in the southern sky with the Hubble Space Telescope. The exposure time was divided among four filters, F435W (B435), F606W (V606), F775W (i775), and F850LP (z850), to give approximately uniform limiting magnitudes mAB~29 for point sources. The image contains at least 10,000 objects presented here as a catalog. Few if any galaxies at redshifts greater than ~4 resemble present day spiral or elliptical galaxies. Using the Lyman break dropout method, we find 504 B-dropouts, 204 V-dropouts, and 54 i-dropouts. Using these samples that are at different redshifts but derived from the same data, we find no evidence for a change in the characteristic luminosity of galaxies but some evidence for a decrease in their number densities between redshifts of 4 and 7. The ultraviolet luminosity density of these samples is dominated by galaxies fainter than the characteristic luminosity, and the HUDF reveals considerably more luminosity than shallower surveys. The apparent ultraviolet luminosity density of galaxies appears to decrease from redshifts of a few to redshifts greater than 6. The highest redshift samples show that star formation was already vigorous at the earliest epochs that galaxies have been observed, less than one billion years after the Big Bang.Comment: 44 pages, 18 figures, to appear in the Astronomical Journal October 200

    Stars in the Hubble Ultra Deep Field

    Full text link
    We identified 46 unresolved source candidates in the Hubble Ultra Deep Field, down to i775 = 29.5. Unresolved objects were identified using a parameter S, which measures the deviation from the curve-of-growth of a point source. Extensive testing of this parameter was carried out, including the effects of decreasing signal-to-noise and of the apparent motions of stars, which demonstrated that stars brighter than i775 = 27.0 could be robustly identified. Low resolution grism spectra of the 28 objects brighter than i775 = 27.0 identify 18 M and later stellar type dwarfs, 2 candidate L-dwarfs, 2 QSOs, and 4 white dwarfs. Using the observed population of dwarfs with spectral type M4 or later, we derive a Galactic disk scale height of 400 \pm 100 pc for M and L stars. The local white dwarf density is computed to be as high as (1.1 \pm 0.3) x10^(-2) stars/pc^3. Based on observations taken 73 days apart, we determined that no object in the field has a proper motion larger than 0.027"/year (3 sigma detection limit). No high velocity white dwarfs were identified in the HUDF, and all four candidates appear more likely to be part of the Galactic thick disk. The lack of detected halo white dwarfs implies that, if the dark matter halo is 12 Gyr old, white dwarfs account for less than 10% of the dark matter halo mass.Comment: 35 pages, 11 figures, accepted by Ap

    Gravitational Lensing and the Hubble Deep Field

    Get PDF
    We calculate the expected number of multiply-imaged galaxies in the Hubble Deep Field (HDF), using photometric redshift information for galaxies with m_I < 27 that were detected in all four HDF passbands. A comparison of these expectations with the observed number of strongly lensed galaxies constrains the current value of Omega_m-Omega_Lambda, where Omega_m is the mean mass density of the universe and Omega_Lambda is the normalized cosmological constant. Based on current estimates of the HDF luminosity function and associated uncertainties in individual parameters, our 95% confidence lower limit on Omega_m-Omega_Lambda ranges between -0.44, if there are no strongly lensed galaxies in the HDF, and -0.73, if there are two strongly lensed galaxies in the HDF. If the only lensed galaxy in the HDF is the one presently viable candidate, then, in a flat universe (Omega_m+Omega_Lambda=1), Omega_Lambda < 0.79 (95% C.L.). These limits are compatible with estimates based on high-redshift supernovae and with previous limits based on gravitational lensing.Comment: 4 pages (aipproc.sty), 2 figures. To appear in "After the dark ages: when galaxies were young," proceedings of the 9th Annual October Astrophysics Conference, eds. S. S. Holt & E. P. Smit

    Quasar Candidates in the Hubble Deep Field

    Full text link
    We focus on the search for unresolved faint quasars and AGN in the crude combine images using a multicolor imaging analysis that has proven very successful in recent years. Quasar selection was carried out both in multicolor space and in "profile space," defined as the multi-parameter space formed by the radial profiles of the objects in the different images. By combining the dither frames available for each filter, we were able to obtain well-sampled radial profiles of the objects and measure their deviation from that of a stellar source. We also generated synthetic quasar spectra in the range 1.0 < z < 5.5 and computed expected quasar colors. We determined that the data are 90% complete for point sources at 26.2, 28.0, 27.8, 26.8 in the F300W, F450W, F606W and F814W filters, respectively. We find 41 compact objects in the HDF: 8 pointlike objects with colors consistent with quasars or stars, 18 stars, and 15 slightly resolved objects, 12 of which have colors consistent with quasars or stars. We estimate the upper limit of unresolved and slightly resolved quasars/AGNs with V < 27.0 and z < 3.5 to be 20 objects (16,200 per deg^2). We find good agreement among authors on the number of stars and the lack of quasar candidates with z > 3.5. We find more quasar candidates than previous work because of our more extensive modeling and use of all of the available color information. (abridged)Comment: We have clarified our discussion and conclusions, added some references and removed the appendix, which is now available from the first author. 37 pages including 10 embedded postscript figures and 6 tables. To appear in the Feb. 99 issue of A

    Redshift clustering in the Hubble Deep Field

    Get PDF
    We present initial results from a redshift survey carried out with the Low Resolution Imaging Spectrograph on the 10~m W. M. Keck Telescope in the Hubble Deep Field. In the redshift distribution of the 140 extragalactic objects in this sample we find 6 strong peaks, with velocity dispersions of 400{\sim}400{\kms}. The areal density of objects within a particular peak, while it may be non-uniform, does not show evidence for strong central concentration. These peaks have characteristics (velocity dispersions, density enhancements, spacing, and spatial extent) similar to those seen in a comparable redshift survey in a different high galactic latitude field (Cohen et al 1996), confirming that the structures are generic. They are probably the high redshift counterparts of huge galaxy structures (``walls'') observed locally.Comment: 14 pages, including 2 figures, to appear in ApJ Letter

    The Hubble Deep Field South Flanking Fields

    Full text link
    As part of the Hubble Deep Field South program, a set of shorter 2-orbit observations were obtained of the area adjacent to the deep fields. The WFPC2 flanking fields cover a contiguous solid angle of 48 square arcminutes. Parallel observations with the STIS and NICMOS instruments produce a patchwork of additional fields with optical and near-infrared (1.6 micron) response. Deeper parallel exposures with WFPC2 and NICMOS were obtained when STIS observed the NICMOS deep field. These deeper fields are offset from the rest, and an extended low surface brightness object is visible in the deeper WFPC2 flanking field. In this data paper, which serves as an archival record of the project, we discuss the observations and data reduction, and present SExtractor source catalogs and number counts derived from the data. Number counts are broadly consistent with previous surveys from both ground and space. Among other things, these flanking field observations are useful for defining slit masks for spectroscopic follow-up over a wider area around the deep fields, for studying large-scale structure that extends beyond the deep fields, for future supernova searches, and for number counts and morphological studies, but their ultimate utility will be defined by the astronomical community.Comment: 46 pages, 15 figures. Images and full catalogs available via the HDF-S at http://www.stsci.edu/ftp/science/hdfsouth/hdfs.html at present. The paper is accepted for the February 2003 Astronomical Journal. Full versions of the catalogs will also be available on-line from AJ after publicatio

    The Visibility of Galactic Bars and Spiral Structure At High Redshifts

    Get PDF
    We investigate the visibility of galactic bars and spiral structure in the distant Universe by artificially redshifting 101 B-band CCD images of local spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. Our artificially redshifted images correspond to Hubble Space Telescope I-band observations of the local galaxy sample seen at z=0.7, with integration times matching those of both the very deep Northern Hubble Deep Field data, and the much shallower Flanking Field observations. The expected visibility of galactic bars is probed in two ways: (1) using traditional visual classification, and (2) by charting the changing shape of the galaxy distribution in "Hubble space", a quantitative two-parameter description of galactic structure that maps closely on to Hubble's original tuning fork. Both analyses suggest that over 2/3 of strongly barred luminous local spirals i.e. objects classified as SB in the Third Reference Catalog) would still be classified as strongly barred at z=0.7 in the Hubble Deep Field data. Under the same conditions, most weakly barred spirals (classified SAB in the Third Reference Catalog) would be classified as regular spirals. The corresponding visibility of spiral structure is assessed visually, by comparing luminosity classifications for the artificially redshifted sample with the corresponding luminosity classifications from the Revised Shapley Ames Catalog. We find that for exposures times similar to that of the Hubble Deep Field spiral structure should be detectable in most luminous low-inclination spiral galaxies at z=0.7 in which it is present. [ABRIDGED]Comment: Accepted for publication in The Astronomical Journa
    corecore