6 research outputs found

    Hardware Penetration Testing Knocks Your SoCs Off

    Get PDF
    Today’s society depends on interconnected electronic devices, which handle various sensitive information. Due to the knowledge needed to develop these devices and the economic advantage of reusable solutions, most of these systems contain Third-Party Intellectual Property (3PIP) cores that might not be trustworthy. If one of these 3PIP cores is vulnerable, the security of the entire device is potentially affected. As a result, sensitive data that is processed by the device can be leaked to an attacker. Competitions like Hack@DAC serve as a playground to develop and examine novel approaches and computer-aided tools that identify security vulnerabilities in System-on-Chip (SoC) Register-Transfer-Level (RTL) designs. In this paper, we present a successful divide and conquer approach to test SoC security which is illustrated by exemplary RTL vulnerabilities in the competition’s SoC design. Additionally, we craft real-world software attacks that exploit these vulnerabilities

    Fake it till you make it: Data Augmentation using Generative Adversarial Networks for all the crypto you need on small devices

    Get PDF
    Deep learning-based side-channel analysis performance heavily depends on the dataset size and the number of instances in each target class. Both small and imbalanced datasets might lead to unsuccessful side-channel attacks. The attack performance can be improved by generating traces synthetically from the obtained data instances instead of collecting them from the target device. Unfortunately, generating the synthetic traces that have characteristics of the actual traces using random noise is a difficult and cumbersome task. This research proposes a novel data augmentation approach based on conditional generative adversarial networks (cGAN) and Siamese networks, enhancing in this way the attack capability. We present a quantitative comparative machine learning-based side-channel analysis between a real raw signal leakage dataset and an artificially augmented leakage dataset. The analysis is performed on the leakage datasets for both symmetric and public-key cryptographic implementations. We also investigate non-convergent networks\u27 effect on the generation of fake leakage signals using two cGAN based deep learning models. The analysis shows that the proposed data augmentation model results in a well-converged network that generates realistic leakage traces, which can be used to mount deep learning-based side-channel analysis successfully even when the dataset available from the device is not optimal. Our results show potential in breaking datasets enhanced with ``faked\u27\u27 leakage traces, which could change the way we perform deep learning-based side-channel analysis

    SoK: Parameterization of Fault Adversary Models - Connecting Theory and Practice

    Get PDF
    Since the first fault attack by Boneh et al. in 1997, various physical fault injection mechanisms have been explored to induce errors in electronic systems. Subsequent fault analysis methods of these errors have been studied, and successfully used to attack many cryptographic implementations. This poses a significant challenge to the secure implementation of cryptographic algorithms. To address this, numerous countermeasures have been proposed. Nevertheless, these countermeasures are primarily designed to protect against the particular assumptions made by the fault analysis methods. These assumptions, however, encompass only a limited range of the capabilities inherent to physical fault injection mechanisms. In this paper, we narrow our focus to fault attacks and countermeasures specific to ASICs, and introduce a novel parameterized fault adversary model capturing an adversary\u27s control over an ASIC. We systematically map (a) the physical fault injection mechanisms, (b) adversary models assumed in fault analysis, and (c) adversary models used to design countermeasures into our introduced model. This model forms the basis for our comprehensive exploration that covers a broad spectrum of fault attacks and countermeasures within symmetric key cryptography as a comprehensive survey. Furthermore, our investigation highlights a notable misalignment among the adversary models assumed in countermeasures, fault attacks, and the intrinsic capabilities of the physical fault injection mechanisms. Through this study, we emphasize the need to reevaluate existing fault adversary models, and advocate for the development of a unified model

    The End of Logic Locking? A Critical View on the Security of Logic Locking

    Get PDF
    With continuously shrinking feature sizes of integrated circuits, the vast majority of semiconductor companies have become fabless, i.e., chip manufacturing has been outsourced to foundries across the globe. However, by outsourcing critical stages of IC fabrication, the design house puts trust in entities which may have malicious intents. This exposes the design industry to a number of threats, including piracy via unauthorized overproduction and subsequent reselling on the black market. One alleged solution for this problem is logic locking, also known as logic encryption, where the genuine functionality of a chip is “locked” using a key only known to the designer. If a correct key is provided, the design works as intended but with an incorrect key, the circuit produces faulty outputs. Unlocking is handled by the designer only after production, hence an adversarial foundry should not be able to unlock overproduced chips. In this work, we highlight major shortcomings of proposed logic locking schemes. They exist primarily due to the absence of a well-defined and realistic attacker model in the current literature. We characterize the physical capabilities of adversaries, especially with respect to invasive attacks and a malicious foundry. This allows us to derive an attacker model that matches reality, yielding attacks against the foundations of locking schemes beyond the usually employed SAT-based attacks. Our analysis, which is accompanied by two case studies, shows that none of the previously proposed logic locking schemes is able to achieve the intended protection goals against piracy in real-world scenarios. As an important conclusion, we argue that there are strong indications that logic locking will most likely never be secure against a determined malicious foundry

    Fault Attacks In Symmetric Key Cryptosystems

    Get PDF
    Fault attacks are among the well-studied topics in the area of cryptography. These attacks constitute a powerful tool to recover the secret key used in the encryption process. Fault attacks work by forcing a device to work under non-ideal environmental conditions (such as high temperature) or external disturbances (such as glitch in the power supply) while performing a cryptographic operation. The recent trend shows that the amount of research in this direction; which ranges from attacking a particular primitive, proposing a fault countermeasure, to attacking countermeasures; has grown up substantially and going to stay as an active research interest for a foreseeable future. Hence, it becomes apparent to have a comprehensive yet compact study of the (major) works. This work, which covers a wide spectrum in the present day research on fault attacks that fall under the purview of the symmetric key cryptography, aims at fulfilling the absence of an up-to-date survey. We present mostly all aspects of the topic in a way which is not only understandable for a non-expert reader, but also helpful for an expert as a reference
    corecore