
1

The End of Logic Locking?
A Critical View on the Security of Logic Locking

Anonymous Submission

Index Terms—Logic Locking, Logic Encryption
Abstract—With continuously shrinking feature sizes of inte-

grated circuits, the vast majority of semiconductor companies
have become fabless, i.e., chip manufacturing has been outsourced
to foundries across the globe. However, by outsourcing critical
stages of IC fabrication, the design house puts trust in entities
which may have malicious intents. This exposes the design indus-
try to a number of threats, including piracy via unauthorized
overproduction and subsequent reselling on the black market.
One alleged solution for this problem is logic locking, also known
as logic encryption, where the genuine functionality of a chip is
“locked” using a key only known to the designer. If a correct key
is provided, the design works as intended but with an incorrect
key, the circuit produces faulty outputs. Unlocking is handled by
the designer only after production, hence an adversarial foundry
should not be able to unlock overproduced chips.

In this work, we highlight major shortcomings of proposed
logic locking schemes. They exist primarily due to the absence
of a well-defined and realistic attacker model in the current lit-
erature. We characterize the physical capabilities of adversaries,
especially with respect to invasive attacks and a malicious foundry.
This allows us to derive an attacker model that matches reality,
yielding attacks against the foundations of locking schemes
beyond the usually employed SAT-based attacks. Our analysis,
which is accompanied by two case studies, shows that none of the
previously proposed logic locking schemes is able to achieve the
intended protection goals against piracy in real-world scenarios.
As an important conclusion, we argue that there are strong
indications that logic locking will most likely never be secure
against a determined malicious foundry.

I. INTRODUCTION

In today’s semiconductor industry, many steps of the fabri-
cation chain are outsourced for complexity and cost reasons.
Most semiconductor companies have become fabless, with chip
manufacturing, testing, and assembly performed at specialized
providers across the globe. While avoiding the substantial costs
of maintaining and upgrading own foundries, new threats arise
when designs are sent to offshore fabs: Integrated Circuits (ICs)
become susceptible to overproduction, counterfeit, and reverse
engineering. Apart from the financial loss for semiconductor
companies [1], counterfeited products can lead to major safety
and security concerns [2].

In order to secure a design against rogue players in the
fabrication chain, countermeasures such as logic locking have
been proposed over the last years, including publications in the
major conferences, e.g., USENIX [3] and CCS [4]. The idea of
logic locking is to integrate a locking mechanism into the circuit
such that it produces faulty outputs whenever an incorrect key is
provided. Only the holder of the Intellectual Property (IP) rights
who is in possession of that key should be able to unlock the IC.
Hence, although possessing all information required to fabricate

the integrated circuit, a malicious foundry lacks the secret key
to unlock any overproduced ICs and subsequently sell them on
the black market. Likewise, plain reverse engineering yields a
locked design, i.e., the original IP is obfuscated to some extend.
Even though the prospect of logic locking sounds promising to
protect against piracy, the lack of a well-defined attacker model
yielded many loosely argued security sketches in the past. More
critically, while research on logic locking has become an arms-
race between increasingly specialized SAT-based attacks and
corresponding countermeasures, only restricted attacker models
have been considered in the literature so far.

Contributions: The work at hand provides three main
contributions:

1) Based on systematic analysis of the attacker models
and protection goals in previous work, we identify the
lack of real-world physical capabilities of adversaries
in existing attacker models. Therefore, we introduce a
realistic attacker model for logic locking schemes which
is not restricted to non-invasive attacks (as in previous
work) but also considers invasive approaches. For a sound
assessment of security, we include a precise definition of
goals for a successful attack.

2) We develop two generic attack methodologies that target
the foundations of all proposed locking schemes. Our
attacks are based on probing and minimal mask modi-
fication as attack vectors. We support the attacks with
experimental case studies that demonstrate semi-automated
identification of points of interest.

3) As the main contribution, we generalize our findings for
virtually any logic locking scheme. The generic applica-
bility of our attacks renders all existing countermeasures
insufficient. Finally, we argue that logic locking will most
likely never succeed against a determined adversary.

Outline: The remainder of this work is structured as follows:
we start with background information on logic locking and
introduce important terminology in Section II. Next, we
summarize prior work on attacks on logic locking in Section III.
In Section IV, we briefly categorize existing schemes and
identify two underlying principles that are common to all
existing schemes. With the current state of logic locking laid
out, we analyze and revise the existing attacker model(s) in
Section V. Based on the new model, we introduce two invasive
attack vectors in Section VI before using them to demonstrate
attacks in Section VII. We conclude our work and discuss the
general impact of our this work in Section VIII.

2

Design House
3rd Party IP

Foundry Testing Assembly

IC

End User
Vendor

Market In-House Production

Figure 1: Simplified view on an exemplary, outsourced design fabrication process. Every entity hatched red is untrusted and
can potentially be malicious.

Figure 2: An example of combinational logic locking with EPIC as depicted in [5]. Left is the original design and right the
locked result.

II. BACKGROUND ON LOGIC LOCKING

In this section, we provide background information on logic
locking. We first introduce the motivation and main goals,
before outlining how logic locking works in general. We explain
the difference between combinational and sequential logic
locking and summarize the assumptions made in previous
research regarding the adversary.

A. Motivation and Objectives

Most design houses have become fabless. They outsource the
physical production, assembly, and testing of their integrated
circuits to service providers across the globe. Figure 1 shows
a simplified view on a common fabrication chain. Since
outsourced processes are not within the direct control of the
design house, they must be considered potentially malicious
environments. Every external entity in the fabrication chain is
hence untrusted (shaded red in Figure 1).

a) Protection Goals: Logic locking aims to protect an IC
against piracy by untrusted parties in the fabrication chain,
starting from the point when it leaves the design house,
throughout the manufacturing process, and its remaining life
cycle. Piracy can be of physical nature, as in overproduced
products or IP-piracy through reverse engineering. The primary
focus of logic locking is to prevent overproduction, i.e., only
the design house should be able to control the (amount of) ICs
available on the market. While some schemes, e.g., [5], [6], [7],
[4], also mention a protection against IP-theft through reverse-
engineering, i.e., by providing obfuscation, this is not a primary
goal of logic locking that all schemes try to accomplish.

b) General Locking Procedure: Simplified, logic locking
extends the existing design with a dedicated locking circuitry.
This additional logic is closely intertwined with existing cells
and affects the overall IC functionality through a key. If the
correct key is given, the IC works as intended. However, for
an incorrect key, the IC malfunctions and thus cannot be used.
Said key is only known to the design house/IP-rights holder

and is inserted after fabrication in non-volatile on-chip memory.
Therefore, in theory, no malicious entity in the supply chain
is able to sell overproduced ICs, since they are simply not
functional before reaching the design house again.

More specifically, logic locking can be divided into two
major categories: combinational and sequential logic locking.

B. Combinational Logic Locking

The concept of combinational logic locking and the first
scheme “EPIC” were introduced in 2008 by Roy et al. [8]. The
main idea is to lock the Boolean logic of a design’s data path.
A dominant strategy is to insert several X(N)OR gates and
optionally inverters further down the wires such that a correct
key does not change the original output. With an incorrect
key, the IC will thus “make mistakes” during computations. A
simple example of an EPIC-locked circuit is shown in Figure 2.

C. Sequential Logic Locking

In sequential logic locking, the data path of a design remains
untouched while its control logic, i.e., Finite State Machines
(FSMs), is targeted. Here, the locking circuitry extends the
original state transitions with additional dummy states. Details
depend on the actual scheme, but common examples are states
that lead to infinite loops or wildly jump between each other.
Simplified, the key nullifies the modification, e.g., by correctly
traversing these dummy states or by providing the required
control signals for intended state transitions.

Four basic classes of sequential logic locking schemes
exist as identified in [9]. They were initially presented in the
following contributions: HARPOON by Chakraborty et al. [10],
Dynamic State Deflection by Dofe et al. [11], Active Hardware
Metering by Alkabani et al. [3], and Interlocking Obfuscation
by Desai et al. [12]. There has been considerable follow-
up work, mostly improving specific aspects of the original
schemes. An example of a HARPOON-locked circuit is shown
in Figure 3.

3

Figure 3: An example of sequential logic locking with HARPOON as depicted in [10]. The locking circuitry facilitates the
dummy states on the left while only the correct state sequence leads to the original FSM on the right.

D. Notation and Terminology

In the current literature, the terms “logic locking”, “logic
encryption”, and “logic obfuscation” are used synonymously.
We want to emphasize a remark from Plaza and Markov that
this mixed terminology is ill-advised and in fact misleading
[13]. Indeed “encryption” is tied to making data indecipherable
through transformation of the data itself, “obfuscation” trans-
forms a structure into an alternative but functionally equivalent
representation, while only “locking” describes restricting access
to functionality until unlocked. Hence,“logic locking” is notably
the most appropriate term and we will use it in the remainder
of this work.

The general terminology in the logic locking literature has
not been consistent as well. Examples for the key that is
connected to the locking circuitry include “secret key”, “unlock
key”, “master key”, “internal key”, and “chip key”. Therefore,
we select generic terms below which appear to be most suitable
to address all existing schemes while avoiding confusion. The
terms and their relation are also visualized in Figure 4.

• The Internal Key is used by the locking circuitry and
only known to the IP-rights holder. While most schemes
are unlocked using the same internal key for all ICs, in
one of the schemes the internal key is not fixed in the
design, i.e., it is individual for each IC.

• A Key Preprocessor is an optional module preceding a
locking scheme. While its output, the internal key, may be
the same for all ICs, its input is unique for each IC. This
is commonly achieved through the use of a Physically
Unclonable Function (PUF).

• The Chip Key is derived from the internal key for the
unlocking process and eventually transmitted to the IC.
Without a key preprocessor, the chip key is simply the
internal key itself. Otherwise, the chip key is the input of
the key preprocessor, which in turn computes the internal
key.

• Individual chip/internal key indicates that the respective
key is different for each IC.

• Global chip/internal key indicates that the respective key
is identical for each IC.

IP-rights Holder
(internal key)

chip key

chip key

Key Preprocessor

()
internal key

Locked Circuitry

Figure 4: Visualization of the relation between the different keys
and elements in logic locking. Note that the key preprocessor
is optional.

E. Attacker Model in Previous Work

It is worth noting that the logic locking literature lacks a
well-defined attacker model. In most publications, the adversary
gets oracle access to several locked and unlocked ICs, as well
as a gate-level netlist of the locked design. Access to unlocked
ICs implies that they are already available on the open market
or that the attacker has an insider at some stage where ICs are
unlocked.

In previous work, the attacker’s capabilities are only dis-
cussed in-depth with respect to non-invasive attacks, most
dominantly SAT-based attacks. The adversary is allowed to
observe the input/output behavior of the ICs only via black-box
access. Furthermore, he is allowed to analyze and simulate
the locked netlist. Invasive attacks have been mentioned only
in passing, cf. [8], [5], but either written off as unrealistic or
protection is claimed.

Additionally, the protection goals of logic locking as well
as the definition of what constitutes a successful attack vary
in the literature. While all schemes have the goal to thwart
overproduction, some schemes additionally argue to protect
against reverse engineering or hardware Trojan insertion.
Several SAT attacks claim success after recovering the internal
key [14]. However, recovering the internal key alone might
not suffice to attack the locking scheme, e.g., if it is used with
EPIC’s key preprocessor [8], [5].

4

III. RELATED WORK ON ATTACKS

Logic locking has been subject to several kinds of attacks.
In this section, we will shortly introduce the on-going work
in this area. For more details we refer the interested reader to
[15] and [16].

A. Attacks on Combinational Logic Locking

Attacks on combinational logic locking schemes are mostly
based on SAT-solving. The general premise is that an attacker is
in possession of the locked netlist, e.g., through theft or reverse
engineering, and has obtained an already unlocked device, e.g.,
from the open market or an insider. Then, the main idea is to
find a key which produces the same I/O behavior as observed
from an unlocked device. The recovered key is not necessarily
equal to the actual internal key. The only guaranty is that both
keys produce the same outputs for the tested inputs.

The first SAT-based attack on logic locking was presented by
Subramanyan et al. [14]. The authors focus on identifying so-
called Distinguishing Input Patterns (DIPs), i.e., patterns that
aim to exclude multiple wrong key candidates at once. Eventu-
ally, a key which is consistent with the input/output behavior
of the circuit is found through said DIPs, practically unlocking
the correct functionality. With respect to locking schemes that
insert key gates at random, Subramanyan et al. effectively
broke all schemes available at the time.

This result sparked further research in the same direction:
with SARLock [17] and AntiSAT [18], defense mechanisms
to thwart SAT-based attacks have been presented shortly after.
Prominent examples for attacks against said SAT defenses are
the Signal Probability Skew (SPS) attack [19] or the Novel
Bypass Attack [20] which in turn inspired more powerful
SAT-based attacks, including Double DIP [21] or the most
recent SMT attack [22]. The aforementioned attacks were again
followed by even stronger defense algorithms as presented
in [23]. From a high-level perspective, this line of research
developed into an arms race between novel attacks against
existing SAT defenses and corresponding countermeasures.

While the majority of attacks focus on SAT-solving, other
attack vectors have received attention as well.

Yasin et al. [7] and Sengupta et al. [24] investigated the
effectiveness of side-channel attacks against logic locking. In
the first work, Yasin et al. provide experiments which discover
more than half of a 32-bit secret key using Differential Power
Analysis (DPA) for schemes that insert their key gates randomly.
They find that more sophisticated placement of key gates
rendered their DPA attacks less efficient. Sengupta et al. extend
the aforementioned work by performing further experiments
and provide ideas how to thwart side-channel attacks on logic
locking in the future.

Another class of attacks takes analysis of (parts of) the netlist
into account. Li et al. introduced an attack that can extract
more than half of the bits of the internal key by identifying
redundant logic [25]. Notably, no unlocked IC is needed for
this attack. Similarly, experiments show that the so-called
Functional Analysis attack on Logic Locking (FALL) [26]
can defeat logic locking without oracle access in approx. 90%
of the cases. The desynthesis attack presented by El Massad

et al. enables an attacker to discover several bits of the secret
key by re-synthesizing the design according to the current key
candidate [27]. Again, the attacker does not need access to an
unlocked IC but precise information on the originally employed
synthesis tools and options. In [28], Yang et al. present how to
unlock the supposedly provable secure locking scheme Stripped-
Functionality Logic Locking (SFLL) [4] within minutes since
traces of the protected input patterns can still be found in
the reverse-engineered design. Another example is the SURF
attack by Chakraborty et al. [29], which combines the machine-
learning-based SAIL attack [30] with functional analysis in
order to successfully recover the internal key.

B. Attacks on Sequential Logic Locking

Sequential logic locking received far less attention by
researchers than its combinational counterpart, both in terms
of schemes as well as attacks.

However, Fyrbiak et al. [9] successfully attacked the four
classes of sequential logic locking they identified (cf. Sec-
tion II-C). The authors focused on underlying characteristics
of FSMs before taking scheme specific properties into account.
They also provide a novel sequential locking approach based
on reconfigurable logic that eliminates common weaknesses of
the existing classes. However, there is a tremendous overhead
in terms of area and latency due to the reconfigurability. Even
though their new approach does not constitute a practical solu-
tion, it underlines that a fundamental rethinking to sequential
logic locking is required.

IV. THE CURRENT STATE OF LOGIC LOCKING SCHEMES

In order to find generic attacks against all logic locking
schemes, it is mandatory to analyze the existing schemes for
common properties. To this end, we first perform a high-level
analysis of existing solutions before elaborating on two basic
but generic observations.

A. High-Level View on Logic Locking

From a high-level perspective, a logic locking solution is
comprised of up to two basic components, namely (1) the
locking scheme itself and (2) a key preprocessor. The former
is a mandatory part of all solutions while the latter is an
optional building block that can be prepended to any scheme
(cf. Section II-D). Given individual chip keys, i.e., key material
that is unique for each IC, a key preprocessor derives the
internal key that is used for the actual unlocking.

Furthermore, two types of locking schemes can be distin-
guished: almost all schemes incorporate a global internal key,
i.e., all ICs that are produced with the same set of masks, can
be unlocked by the same key (cf. Section II-D). However, one
scheme features individual internal keys.

For a more in-depth recap of existing schemes we refer to
the numerous surveys on logic locking, including [31], [32],
[33], [16].

5

1) Locking Schemes with a Global Internal Key: Most
locking schemes facilitate a global internal key. The first
combinational logic locking scheme was “EPIC” [8], [5].
Here, the locking circuitry, namely X(N)OR and inverter gates,
is randomly inserted into the existing combinational logic.
Incorrect key bits result in bit flips in signals, thus leading to
faulty computations.

EPIC triggered considerable follow-up work which intro-
duced new schemes with improved placement of the locking
circuitry, for example based on a small set of randomly
placed gates [34], fault simulation techniques [35], [36], [37],
deducibility of key bits from output [38], or combinations
of such methods [39]. Numerous schemes not only focus on
placement but also on the type of locking circuitry. [6], [40],
[4] are based on look-up tables which [41] extends with one-
way functions, [42] makes use of AND resp. OR gates to also
protect against insertion of hardware Trojans, and [13], [27]
employ MUXes.

This description of prior work is not exhaustive but includes
prominent examples of the different variants of logic locking
schemes that employ global internal keys.

2) Locking Schemes with Individual Internal Keys: In
contrast to the vast amount of schemes featuring global internal
keys (cf. above), there is only a single scheme which generates
an individual internal key for each IC: CLIP by Griffin
et al. [43]. To this end, CLIP employs process variation sensors
which measure slight differences in transistor threshold voltages,
yielding a mechanism comparable to a weak PUF [44], [45].
Since CLIP is part of our experimental evaluation, we shortly
recap the scheme in the following. The design principle of
CLIP’s locking circuitry is illustrated in Figure 5. In order to
protect a combinational function f , CLIP locally duplicates it.
The original inputs of f are fed into a so-called “switchbox”
which then provides inputs to both f -instances. Internally, the
switchbox forwards the original inputs to only one f instance
while the input values of the other instance may be modified.
Which instance receives the original values is selected by the
output value of one of the aforementioned process variation
sensors. Hence, one instance of f computes wrong results
while the other instance outputs expected values. An “output
selector”, i.e., a multiplexer, decides, based on one bit of the
internal key, which output of the two f -instances becomes the
final output. As a result, only if the key bit correctly selects
the output of the f -instance with unmodified inputs, the circuit
will behave correctly. With CLIP, each IC produces its own
individual internal key, however, even the designer has no way
of knowing a specific internal key beforehand. Therefore, the
designer has to query each produced chip with a test set in
order to recover the internal key from the circuit’s outputs and
subsequently unlock the device. The authors acknowledge that
this can also be done by a malicious entity.

3) Key Preprocessors: Since in most locking schemes all
ICs share a global internal key, disclosure of said key would
immediately enable overproduction. The need of a mechanism
to individualize key material without adjusting the mask for
each IC has been noted by various authors. A key preprocessor
can be used to achieve this exact goal, i.e., every IC will have
an individual chip key from which the internal key is computed

Figure 5: Illustration of CLIP as depicted in [43].

internally. Simplified, this derivation is performed with help
of an IC-unique value, for example obtained via a PUF. This
way, despite a scheme having a global internal key, every IC
requires its own individual chip key that is according to its
PUF response. If the correct chip key of one IC was used to
unlock a different IC, the key preprocessor would thus compute
an incorrect internal key and the design remains locked. As a
direct consequence, even if an adversary obtained the internal
key itself, other ICs would still not be unlockable if he cannot
forge a chip key. In the literature, only two key preprocessors
have been proposed so far:

Roy et al. presented the first key preprocessor together with
EPIC [8], [5]. The initial motivation was enabling remote
unlocking of ICs via asymmetric cryptography, i.e., the IC
does not have to be physically send back to the design house
for unlocking. The key preprocessor features a PUF or True
Random Number Generator (TRNG) and an RSA engine,
capable of key generation, decryption, and signature verification.
While the public RSA key of the design house is hardcoded,
an individual RSA key pair for the IC is generated during
the initial power-up using the PUF or TRNG as a source of
randomness. This key pair is then burnt into fuses. In order to
unlock an IC, the design house encrypts the global internal key
using the individual RSA public key of that IC and then signs
the resulting ciphertext with its own private key. The chip key
sent to the IC contains both, the encrypted internal key and
the signature. The key preprocessor derives the internal key
from the chip key by verifying the signature and subsequently
decrypting the ciphertext with its own private key. Remote
unlocking is enabled since an attacker cannot forge a valid
signature.

The idea for a different key preprocessor, a Logic Encryption
Cell (LEC), was briefly mentioned by Rajendran et al. in 2012
[35]. For LECs, the chip key consists of a PUF challenge
and additional data the authors refer to as user key. On chip,
the PUF response is XORed with the user key to generate
the internal key. With respect to EPIC’s key preprocessor, the
authors argue that a PUF circuit can be implemented much
smaller than an RSA engine, however, they do not provide
any information regarding concrete instantiation or PUF setup.
Furthermore, it is claimed that, even if an adversary obtained
the chip key, i.e., PUF challenge and user key, security was
not compromised since the attacker cannot guess the PUF
response. According to the authors, LECs therefore provide the

6

same security as an RSA engine. However, it is not described
how the design house can learn/challenge the PUF prior to
unlocking in order to generate valid chip keys.

B. Common Fundamental Aspects

After this brief summary of existing logic locking schemes
and key preprocessors, we identified two aspects that are
common in all of logic locking and are inherent to the
underlying structure.

1) Internal Key Handling: After unlocking an IC by the
IP-rights holder, the internal key has to be stored on-chip in
non-volatile memory. While most publications do not address
storage details, [4] and [32] propose to use read- or tamper-
proof memory. However, using dedicated secure memory is not
beneficial in the context of logic locking: In typical use cases
for protected memory, e.g., to store cryptographic keys, data is
read from the protected memory only when needed and cleared
from internal registers as soon as possible. The exposure of
sensitive data is limited to the bare minimum. However, for
logic locking, the internal key has to be constantly available
during IC operation (cf. [37]). It is loaded into a register
during boot and remains static until shutdown. This leads to
the following generic observation:

Observation 1. Every logic locking scheme will have its
internal key constantly available in a register during operation.

2) Individualization: While most schemes facilitate a global
internal key, CLIP manages to have individual internal keys.
Likewise, by using a key preprocessor, schemes with a global
internal key can be enhanced to require individual chip keys.
These approaches make use of an IC-unique random value. In
the examples of CLIP and LECs, a PUF is used while EPIC’s
key preprocessor also gives the option to use a classical TRNG.
Regardless of the way this (crucial) random value is processed,
it is the only source of individualization. This leads to the
following generic observation:

Observation 2. All individualization of key material is based
on some kind of internal entropy, e.g., derived from a TRNG
or a PUF.

V. A REVISED ATTACKER MODEL

We recall that the primary goal of logic locking is to
defend against IC overproduction and subsequent trade, e.g.,
on the black market (cf. Section II-A). Another goal which
is oftentimes also mentioned is IP protection with respect
to reverse engineering. Regarding plain overproduction, the
malicious foundry can easily be identified as the main adversary,
while reverse engineering can potentially be performed by other
parties as well, including competitors or even end users. In this
section, we investigate the capabilities of strong adversaries
along the design chain and how these capabilities can be used
to defeat logic locking.

A. The Attacker in Previous Work

As mentioned in Section III, previous work assumed that an
adversary is in possession of the design’s netlist and, in most

cases, also obtained (multiple) locked and unlocked ICs. Note
that with respect to the first requirement, a malicious foundry
poses a particularly strong adversary: it receives the design
in form of GDSII/OASIS files and generates the lithographic
masks for the subsequent fabrication of ICs, hence, it has full
access to error-free representations of all layers of the design.
For other parties, e.g., competitors, obtaining an error-free
netlist is already a challenging task [46].

With access to the netlist (and an unlocked circuit), the
adversary can then employ SAT-solving or other non-invasive
attacks to find a suitable internal key. While the success of
SAT attacks greatly relies on the targeted locking approach,
so far, none of the available non-invasive attacks are able to
defeat logic locking entirely, e.g., the FALL attack achieves a
success rate of 81% against SFLL [26]. Crucially, even when
assuming a higher success rate, all SAT-based attacks will not
allow to use overproduced chips as soon as a key preprocessor
is employed, even if the internal key is compromised. Crucially,
even if a SAT-based attack succeeds in recovering the internal
key, overproduced ICs cannot necessarily be unlocked if a key
preprocessor is present.

B. A Foundry-Level Attacker Model

We argue that restricting the attacker to black-box access
severely underestimates the capabilities of a foundry-level ad-
versary who, again, is the main threat regarding overproduction.
The key advantages of a malicious foundry include complete
knowledge about the design on netlist level as well as physical
access within the manufacturing process. Its extensive insights
into the layout of all components allow to identify points of
interest with ease. Also, modern foundries need to be equipped
with (production) failure analysis and process debugging tools.
Such tools can be easily misused to perform invasive attacks
such as probing and editing. We note that invasive attacks
are not limited to foundry-level adversaries. Other adversaries
with the corresponding equipment and expertise can in theory
perform similar attacks, albeit with potentially more effort. We
want to emphasize that we do not merely introduce a more
powerful adversary, but rather argue that the existing models
do not capture the full capabilities of the primary adversaries
in logic locking.

We will now introduce a more comprehensive attacker model
covering foundry-level adversaries that considers both, invasive
and non-invasive approaches, and a definition of a successful
attack.

1) Adversarial Capabilities: The adversary has access to
several assets:
• The gate-level netlist of the locked design, which can be

extracted from the GDSII/OASIS files (cf. Section II-A).
• Multiple locked ICs, which can be obtained during

the regular production process. For behavioral analysis,
simulation of the locked netlist may already suffice.

• Multiple unlocked ICs obtained on the market or di-
rectly in the foundry if remote unlocking is used (cf.
Section IV-A3). We note that in some use cases, e.g.,
military hardware, obtaining unlocked ICs can be hard or
close to impossible.

7

• The lithographic masks and other fabrication artifacts
used to manufacture the ICs.

• State-of-the-art IC analysis equipment, i.e., testing
equipment and tools to perform invasive analysis.

2) Defining a Successful Attack: We define the primary
target of an attacker to successfully overproduce functional
ICs. However, depending on the scenario, an attacker may
already be successful if he can extract the protected IP, i.e.,
commit IP-theft on a logical level. There are three principal
goals to achieve this:

1) The adversary is able to unlock arbitrary locked ICs
without design modification.

2) The adversary is able to interfere with the fabrication
process to disable or weaken the locking scheme, thus
enabling to unlock ICs that are produced with the
adversary-induced modification.

3) The adversary is able to remove the locking scheme on
netlist level (removal attack), thus obtaining an unlocked
netlist.

If the adversary follows the primary target, i.e., physical over-
production, Goal 1 is not necessarily achieved by recovering
the internal key (e.g., through a SAT-based attack) since a
key preprocessor may prevent the attacker from generating
correct chip keys. If the locking scheme can be removed or
circumvented (Goal 2 and Goal 3), the adversary can directly
manufacture unprotected ICs. In the best case for the adversary,
he can modify the lithographic masks that were used for the
genuine order and start to overproduce (Goal 2). In the worst
case, he has to generate entirely new masks (especially for
Goal 3), which is considerably more expensive than production
with modified existing masks. Consequently, the threat of these
attacks depends not only on technical aspects but also on
the financial overhead. For example, a removal attack with
succeeding reproduction of IP may only be worthwhile if the
black market revenue is expected to amortize the production
costs of new masks.

On the other hand, if the adversary follows the target of
IP-theft on a logical level, achieving Goal 1 or Goal 2 is
not necessarily sufficient, since the IP is not guaranteed to
be stripped of the obfuscating elements. Goal 3 however,
immediately returns the desired results.

In total, a suitable security assessment of a locking scheme
needs to take these factors into account. Because the goals’
implications highly depend on the target, i.e., protection against
overproduction and/or IP-theft through reverse engineering, we
recommend that schemes clearly state their strength against all
three goals and name the targets they want to protect against.
Likewise, we recommend that attacks specify which goals are
reached in order to assess their effectiveness.

VI. NEW ATTACK VECTORS ON LOGIC LOCKING

The new attacker model allows for several new attack vectors
which have not been considered in previous work. Especially,
invasive attacks can (and should) now be considered as well.
In the following, we will exemplarily present two new attack
vectors with broad impact. Even though they do not cover all
attack vectors available to an invasive adversary, we will show

in Section VII that they are already sufficient to target the
underlying mechanics of logic locking in a general manner.

1) Attack Vector: Probing Registers: The internal key is a
core asset that should only be known to the design house. If
an attacker gets hold of said key, the strength of the scheme
is notably reduced or even entirely nullified. Hence, a strong
attack vector involves probing the internal key of an unlocked
IC during operation.

While probing of signal values can be difficult for a generic
attacker, modern foundry-level adversaries have access to
sophisticated testing labs [47], which are needed, e.g., for
failure analysis. Hence, the attacker is well acquainted with
probing techniques. If a signal of interest is routed close to
the top layer, probing needles can extract signal values quite
easily after Focused Ion Beam (FIB) preparation. Note that
this routing information is especially readily available to the
foundry in form of the GDSII/OASIS files. If a frontside
approach is not an option, backside probing techniques can
be leveraged, such as e-beam or laser voltage probing as used
in standard testing routines [48], [49], [50], or electro-optical
probing and electro-optical frequency modulation [51]. The
latter can be further improved by preprocessing the backside
with a FIB [52]. We emphasize again that in addition to the
technical capabilities, a malicious foundry has unobstructed
insights into the design without the need of expensive and
error-prone reverse engineering (cf. Section II-A).

In addition, the adversary only needs to probe static data. A
locked IC only operates correctly as long as the correct internal
key is input to the locking circuitry, i.e., it is a static signal
(cf. Section IV-B). Thus, extracting an internal key or chip key
is not temporally restricted, i.e., the adversary does not need
control over the clock or other information about the timing
of the device under attack.

2) Attack Vector: Minimal Mask Modification: Producing
lithographic masks is a costly step in modern IC manufacturing.
However, making minimal adjustments to fabricated masks
is feasible using mask repair techniques. With minimal mask
modification, we refer to, for example, cutting selected individ-
ual wires at cell inputs and reconnecting them to VCC/GND.
Hence, these modifications can, for example, tie a normally
switching signal to a known constant value. We explicitly
do not require insertion of additional logic cells, which is
a significantly more complex task. In contrast, connecting a
logic-cell’s input wire to VCC or GND is quite feasible since
the VCC and GND rails run directly beneath the cell rows in
CMOS.

Mask repair techniques commonly available to foundries
include e-beams [53], [54], [55] or nano-machining via atomic
force microscopy [56], which can even be used beyond
20 nm technology. In 2012, Zeiss, a major provider of such
equipment, said that their “current system performance is
significantly smaller than the claimed limit of 20 nm.” [56].
Hence, nowadays, it is reasonable to expect that an ever
growing number of foundries is capable of performing the
aforementioned minimal adjustments. As an example for the
effectiveness of minimal mask modification even on small
feature sizes, we show in Figure 6 a mask (32nm reticle)
before and after repair, taken from [55].

8

(a) Erroneous mask and resulting
wafer print.

(b) Repaired mask and resulting
wafer print.

Figure 6: Examples of mask repair [55].

VII. ATTACK VECTOR EVALUATION

In this section, we will show how the new attack vectors
following from our revised attacker model can lead to successful
attacks against virtually all logic locking schemes proposed to
date. Crucially, an adversary can exploit the common aspects
identified in Section IV-B. Therefore, the premises of the
attacks are applicable regardless of the used scheme or key
preprocessor. We first discuss how to attack locking schemes
without a key preprocessor and subsequently present attacks on
the key preprocessors. Our attacks are accompanied by case-
studies to demonstrate semi-automated identification of points
of interest. All resources for the case studies, i.e., netlists and
code, are available online at GitHub1.

1) Probing Attacks: We recall that probing of values is
readily available to the adversaries considered in the attacker
model. This allows an adversary to directly target the internal
key. If the locking scheme does not produce an individual
internal key for each IC, such a probing attack can disclose the
global internal key and any overproduced IC can subsequently
be unlocked. Note that the vast majority of proposed schemes
is solely based on a global internal key (cf. Section IV-A).

a) Locating the Internal Key: In order to launch such a
probing attack, the adversary must be able to locate the internal
key signals. Based on Observation 1, i.e., that the internal key is
constantly available in a register during operation, said register
has quite unique characteristics that allow for semi-automated
identification. In the following, we will give an algorithmic
approach on netlist level that identifies signals for probing.
Note that in practice, other approaches are viable as well,
e.g., manual inspection by an experienced reverse engineer or
monitoring of startup behavior.

Following Observation 1, the key is kept in non-volatile
memory and subsequently stored in a register through a memory
interface during boot. The inputs of said register are only
connected to the memory interface, since the register is never
loaded with anything else. In order to access the key from
its permanent storage inside the IC, a shift register has to be
used since an adequate key size exceeds common memory bus
widths. Hence, our strategy is to identify shift registers that are
loaded from memory and filter the results afterwards through
additional criteria such as “loaded only once”.

We outlined the general data path structure of a register
that is loaded from memory in Figure 7. First, an analyst has
to manually identify the signals which form the memory cell
outputs. This step is straightforward since memory cells can be

1Resources are available at https://gofile.io/?c=PaO0kE to preserve review
anonymity.

n-bit memory output register
n

memory cells

decoding logic

design logic

k-bit internal key register

.

n

Figure 7: Simplified illustration of the data path from an n-bit
memory interface to a k-bit key register, where k > n.

easily distinguished from digital logic. These memory output
signals are traced to the next set of Flip Flops (FFs) which
mark the “memory output register” (cf. Figure 7) and thus the
starting point for the remaining analysis.

For each FF in the memory output register, all succeeding
FFs are treated as starts of shift registers. By following the
chain of directly connected FFs, the full shift registers are
identified. Note that a shift register that shifts, for example,
by 8 bits at a time, is actually implemented as eight single-bit
shift registers with common control signals. Therefore, after
identifying said single-bit shift registers, they are grouped by
their length and common control signals.

As mentioned earlier, registers that receive data from multiple
locations can be ignored, since the key register is only loaded
from memory once and then never updated.

By probing the remaining registers and then trying the
resulting key candidates on a locked IC, the correct key is
identified.

b) Experimental Evaluation: We automated the afore-
mentioned analysis using the open-source hardware analysis
framework HAL [57]. All resources, i.e., our algorithm for HAL
and the netlists, are available online2. In order to evaluate our
approach, we ran the algorithm on locked benchmark circuits
from Trust-Hub3 [58]. We randomly picked three designs from
the category “multiple modification techniques” ranging from
1000-5000 gates, namely c1908-NS3550, c3540-NR1820, and
c6288-NC2240. Since all Trusthub benchmark circuits have
the internal key as a primary input, we prepended the design
with a UART core as shown in Figure 8. All designs were
tested on a Xilinx Artix7 35T FPGA and then synthesized
using the academic Nangate 45 standard cell library. While the
memory interface was abstracted with a direct I/O interface,
our algorithm remains applicable as it depends solely on the
selection of the starting point.

Analogously to the memory output register, we selected
the UART receiver register as our starting point and ran the
analysis in HAL. After manually filtering out register groups
of small size, e.g., less than 20 bit, we verified correctness
of the remaining results by inspecting the gate names of the

2Resources are available at https://gofile.io/?c=PaO0kE to preserve review
anonymity.

3http://www.trust-hub.org/benchmarks/obfuscation

https://gofile.io/?c=PaO0kE
https://gofile.io/?c=PaO0kE
http://www.trust-hub.org/benchmarks/obfuscation

9

UART
TX

UART
RX

Locked
Circuitry

Key

Data

Figure 8: Simplified illustration of our experimental setup.

annotated netlist. Naturally, our algorithm does not make use
of naming information as this would be stripped/anonymized
in a real-world scenario and it was only used for verification.

Additional details on the case study and the output of the
algorithm can be found in Section A.

c) Results: For all three designs our algorithm correctly
recovered the eight single-bit shift registers that together form
the key register. The data register (cf. Figure 8) was always
filtered out during the FF-chain analysis, since its FFs were
separated by multiple combinational gates. These gates acted
as multiplexers since the data register can be loaded from both,
memory and the locked circuitry output.

Note that we neither designed the protected designs, nor the
locking circuitry ourselves and did not take any scheme-specific
details into account. In order to mimic a realistic design, we
had to generate an interface circuitry of the locked designs
ourselves, which we instantiated with the UART core. Whether
the starting point is the output register of a UART interface or
a memory interface is irrelevant to the analysis algorithm.

In the end, the algorithm outputs a small set of candidate
registers for probing. Even if more than one register were
returned by the algorithm, the overall search space has been
heavily reduced to the point where exhaustive testing becomes
feasible. If the bit order of the key, i.e., the order of the single-
bit shift-registers, cannot be deduced from memory layout, all
permutations have to be considered.

Note that the given algorithm is just one way of identifying
key registers. Other approaches may observe the startup
behavior of FFs through simulation of the netlist or optical
inspection of an IC in order to narrow the set of candidates FFs
to probe. Identifying FFs that are loaded only at the beginning
of operation and remain static afterwards are immediate
candidates for the key register.

Crucially, the general premise of a probing attack is always
applicable to logic locking. While the specific approach to find
the key register may require small modifications depending
on the cell library or design architecture, identification of
said register suffices to enable the attack. Especially the
aforementioned startup behavior is fixed and therefore not
mitigated easily.

The probing attack aims for Goal 1 and Goal 3 of our
attacker model: unlocking arbitrary ICs without authorization
and removing the locking scheme on netlist level. While a key

(a) Exemplary CMOS layout of a
NAND3 cell.

(b) Modified cell with input C
fixed to GND.

Figure 9: Application of a mask modification attack. Wire spac-
ings and thickness have been adjusted to improve readability.
The wire on input C was cut and directly connected to GND.

preprocessor might thwart reaching Goal 1, Goal 3 is always
reached through a probing attack.

Recall that a prerequisite of the attack is that the adversary
has access to an unlocked IC. This requirement can be viewed
analogously to a known-plaintext attack in cryptanalysis and is
consistent with both, our revised attacker model as well as the
attacker models used in previous work. As mentioned earlier,
unlocked ICs can be obtained, for example, on the open market
or from an insider.

On a side note, locking schemes with individual internal keys
are not susceptible to mere probing attacks, since obtaining
the internal key of one IC does not provide any information
on the internal key of other ICs. However, these schemes are
inherently vulnerable to mask modification attacks as we will
show in the next section.

2) Mask Modification Attacks: We recall from Observation
2 that in order to individualize locking schemes, an entropy
source, e.g., a TRNG or a PUF, is required. If it were possible
to modify a design such that, instead of the random output,
known fixed values were used, the locking scheme would
essentially fall back to being deterministic, i.e., using a global
key. Note that this does not necessarily disclose sensitive key
material but makes all modified ICs unlock with the same chip
key.

As discussed in Section VI-2, such alterations are particularly
easy with mask modification, since they only require to connect
the input/outputs of selected standard cells to the nearby VCC
and GND rails. Figure 9 illustrates this situation by the example
of a NAND3 cell. It is evident that only minimal edit is required
to connect any of the inputs to GND, as done for input C in
the example.

a) Locating the Signals of Interest: Similar to finding
the key register, the adversary needs to identify the location
at which the mask modification will be applied. In general,
the entropy source (that is, in practice either a TRNG or a
PUF) itself can be identified due to its specific structure, which
is different from the structures employed in the remaining
IC. Examples include analog components within digital logic,
combinational loops used for ring-oscillator PUFs or TRNGs,
or transistor groups that do not match any standard cells as in
the PUF from [43].

10

Figure 10: Visualization of a wire split in HAL. The red scissor
marks a safe position for wire cutting to affect only the orange
cell.

We note that simply tying the output of the entropy source
to a constant value is not sufficient for a realistic attack. In this
case, other modules that are not related to logic locking but
which also make use of said entropy source would malfunction.
An example for such a module is a self-test of a TRNG which
are widely used in practice. Therefore, it is necessary to affect
only the “entropy signals” that reach the logic-locking-related
circuitry. For demonstration purposes, we use HAL to visualize
a suitable position for modification, shown in Figure 10: We
assume that the yellow cell on top was identified as the final
cell of a PUF circuit, and hence renamed to PUF_OUT. The
orange cell is in the path connected to the key register, while
the green cell belongs to a different module. If the outgoing
wire (highlighted in white) is modified at the red scissor, only
the red cell is affected and the green cell still gets the original
PUF output.

We now give a strategy how such a position can be
determined automatically: First, the internal key signals are
identified with the same strategy as for the aforementioned
probing attack. Then, succeeding gates are traced up to a
certain depth. All gates along the traversed paths are marked
as key-affected gates. As a second step, the outputs of the
entropy sources are then traced until a key-affected gate is hit.
Finally, the paths from entropy source to key-affected gates are
traversed backwards to find the last wire split of the original
entropy signal. The identified positions are equivalent to the
example shown in Figure 10. The given strategy is applicable
to circuits where the key is computed/derived from the entropy
source or where the entropy source and the key are both inputs
to converging combinational logic cones.

b) Experimental Evaluation: We modeled a mask mod-
ification attack on CLIP [43], since it is the only available
scheme with individual internal keys. The authors of CLIP
introduced a special process variation sensor for their scheme,
i.e., a weak PUF, shown in Figure 11 which is based on

Figure 11: Process variation sensor based on differences in
transistor threshold voltages as depicted in [43]

Figure 12: Four types of single-bit switchboxes that guarantee
either x′i = xi or x′′i = xi depending on process variation
sensor output pvi as depicted in [43]. Note that, depending
on the value of pvi, some switchboxes may actually have
xi = x′i = x′′i , i.e., are not suitable in all situations.

process variation in transistor threshold voltages. As indicated
in the preceding paragraph, the employed PUF can be identified
by processing the IC layout and identifying non-standard-cell
groups of transistors (cf. Figure 11).

As a case study, we again use the analysis framework HAL to
evaluate the aforementioned strategy to identify the locations
for mask modification. Since TrustHub does not offer any
designs locked with CLIP, we applied the locking scheme to the
unprotected c3540 design of the ISCAS’85 benchmark suite and
embedded it in our I/O architecture shown in Figure 8 which
we also used for the previous case study. In order to protect a
combinational logic cone with CLIP, we need to add the locking
circuitry: a switchbox with a corresponding PUF on one or more
inputs and a multiplexer on the output (cf. Section IV-A2). We
randomly selected eight combinational logic cones of varying
size as protection targets, using each of the four switchbox types
presented by Griffin et al. (cf. Figure 12) twice. Furthermore,
two PUFs were additionally connected to a dummy register.
This dummy register will in practice be accessed by circuit
modules which must not be affected by the mask modification.
We tested the design in simulation and again synthesized the
design using the academic Nangate 45 standard cell library.
Since the PUFs do not correspond to standard cells, they are
represented as custom standard cells of unknown functionality
in the netlist. Note that only eight protected cones, i.e., an 8-bit
key, combined with random placement would result in a very

11

weak locking scheme, but this case study solely aims at finding
suitable points for an attack where only locking circuitry is
affected, hence the example suffices.

We ran our algorithm on two variants of the locked
netlist: in the first variant, every PUF is directly connected
to its switchbox. In the second variant, all PUF outputs go
through an additional buffer and two PUFs bits were used
for two switchboxes each. The originally used PUFs for said
switchboxes were left unconnected.

Additional details on the design of the case study and the
output of the algorithm can be found in Section B.

c) Results: Our algorithm automatically detected the
correct cell inputs/outputs for modification in both netlist
variants for all eight protected logic cones and successfully
avoided PUF output wires which were connected to locking-
unrelated registers. Again, all resources, i.e., the source code of
the algorithm for HAL and the netlists, are available online4.

A mask modification as shown in Figure 9 can now be
applied to manipulate these signals, e.g., connecting them to
GND. All ICs produced with the modified masks are identical
clones of each other with respect to the locking scheme, since
any chip-unique random input has been changed to a common
constant. This allows an adversary to unlock all subsequently
fabricated ICs with a global key. Note that, in general, the
adversary does not have to select a specific value for this
constant since his goal is just to remove the “uniqueness” of
each IC. However, in the special case of CLIP, the choice of
PUF outputs directly sets the internal key.

We stress again that the manipulation only affects the locking
scheme, while potential internal tests of the entropy source
or other modules that use it stay unaffected. Hence, in our
small-scale case study we were able to show that detection of
relevant signals can be automated with open-source analysis
software after manual detection of PUF circuits.

The mask modification attack aims for Goal 2 of our attacker
model: disabling the locking scheme during fabrication. Note
that, in the case of CLIP, the attack also sets the internal key
to an attacker-chosen value, hence also reaching Goal 3. A
mask modification attack is particularly effective if the ICs
are ordered in a single batch, as is often the case in military
products.In that case, mask modification can be performed
after all genuine chips have been shipped and the legitimate
designer will never receive modified instances.

As mentioned before, mask modification is just one attack
vector that targets Observation 2. The same effect could also
be achieved with other techniques, e.g., dopant changes in
transistors as shown by Becker et al. [59], but for the sake of
clarity, we stay with the mask modification technique for the
remainder of this work. Again, note that the general approach
does not rely on locking scheme details, but solely on the fact
that random signal values can be turned into constants with
mask modification.

3) Discussion: In this section, we argued that if used
without a key preprocessor, all existing locking schemes can
be successfully attacked with at least one of the presented

4Resources are available at https://gofile.io/?c=PaO0kE to preserve review
anonymity.

techniques. Furthermore, we demonstrated in case studies that
the points of interest for an attack can be found in an semi-
automated manner, i.e., after manual identification of starting
points. We argued that said starting points are easily identifiable
by a human analyst.

Crucially, the attacks target common fundamental design
properties of all locking schemes: existence of a key register
(Observation 1) and individualization through randomness
(Observation 2). For these attacks, the main difficulty lies
in finding suitable points for an attack, while the remaining
part of the attack requires only well-known techniques (cf.
Section VI).

Even if new schemes that are perfectly secure against any
kind of non-invasive attacks (such as SAT-based attacks) were
discovered, schemes with a global internal key will never be
secure against a probing attack. Likewise, while the target of
mask modification attacks may be slightly different for various
schemes, the attack vector will always be applicable. This
result is summarized in Table IIa.

From the attacks presented so far, we can already conclude
that without a key preprocessor, none of the available
schemes are secure.

A. Attacking Key Preprocessors

As noted in Section IV-A3, employing a key preprocessor is
advantageous because it can retain security even if the internal
key is disclosed. While this is true when considering only
non-invasive attack, we show in the following that no existing
key preprocessor protects against a malicious foundry capable
of invasive attacks.

In previous work, two key preprocessors have been presented,
namely the EPIC key preprocessor [8], [5] and LECs [35] (cf.
Section IV-A3).

1) LECs: LECs make use of a PUF to facilitate individual
chip key. However, when working out the specifics, several
weaknesses arise. The only details given in [35] are that there
is a PUF which receives a challenge and outputs a response.
This mirrors the structure of a strong PUF, although no helper
data, which is typically applied in the reconstruction step of
a strong PUF, is mentioned explicitly. The PUF output is
XORed to the so called “user key” (cf. Section IV-A3) to
generate the internal key. Hence, in order to construct a valid
user key, the design house has to know the PUF response for
the chosen challenge, i.e., an interface to query the PUF is
required. However, an adversary that is already in possession
of the internal key could use this very interface in a similar
way for an attack. Alternatively, without knowledge of the
internal key, the adversary can model the PUF of each IC via
machine learning [60], [61]. He then obtains an unlocked IC
and uses the corresponding model to compute the PUF response
for the respective IC’s challenge, which in turn reveals the
internal key through an XOR with the user key and enables
the aforementioned attack.

We emphasize that these attacks are based on our assump-
tions regarding the PUF instantiation. Unfortunately, [35] does
not provide definite detail, hence we have to consider LECs
unusable in their current state and neglect them in the following.

https://gofile.io/?c=PaO0kE

12

However, the mere application of a PUF is directly vulnerable
to a mask modification attack, comparable to our case study
with CLIP (cf. Section VII-2).

2) EPIC’s Key Preprocessor: We recall that the EPIC key
preprocessor uses asymmetric cryptography to allow for an
individual chip key for each IC, even if the underlying locking
scheme incorporates a global internal key. Furthermore, the
chip key contains not only the encrypted internal key but also
a digital signature for authentication.

We will now present multiple attacks, based on our generic
attack vectors, probing and mask modification. We first
analyze the potential of each attack vector individually, before
evaluating them in a combined fashion. We note that these are
the first published attacks against EPIC’s key preprocessor.

a) Probing Attack: EPIC does not provide in-depth details
on how the unlocking procedure works. For instance, it is not
clear whether the chip key is stored directly on-chip and the
key preprocessor is invoked with each power-up, or whether
only the derived internal key is stored after initial unlocking.
However, in both cases, a probing attack against EPIC’s key
preprocessor can eventually reveal the internal key which
reaches Goal 3 of our attacker model. If only the internal key
is stored, it can be probed directly. If the chip key is stored, the
internal key can be probed from the key preprocessor’s output
wires. Similar to the probing attacks in the previous section,
the main obstacle for an adversary is identifying the signals
of interest. Another viable approach is to extract the chip key
itself as well as the IC’s internal RSA key pair, by probing the
fuses (as shown for eFuses on FPGAs in [62]). This key pair
can then be used to decrypt the internal key from the chip key.

However, knowledge of the internal key alone is not sufficient
to directly unlock other ICs due to the digital signature as
already outlined by the authors of EPIC [8], [5]. Crucially,
we will show that a combination of probing attack and mask
modification attack is indeed successful.

b) Mask Modification Attacks: A mask modification
attack on the EPIC key preprocessor can target the randomness
that is used to generate the internal RSA key. This will lead to
a situation where all ICs use the same (attacker-chosen) key
pair and ultimately accept the same chip key. Alternatively,
the same behavior can also be achieved by targeting the fuses
where the RSA key pair is stored: by fixing the output signals of
said fuses to constant values on mask level, all ICs again share
the same key pair. Without valid chip keys, this attack alone
does not fully break the scheme, though. However, recall that
the initial motivation for EPIC’s key preprocessor was remote
unlocking, where upon request the design house transmits a
valid chip key for an IC. By requesting to unlock a single
modified ICs the attacker can then unlock all “clones” of that
IC with the same data, no probing required, reaching Goal 2
of the attacker model.

Another attack target can be the signature verification
mechanism for authenticity of the chip key. No matter how
the verification is implemented, it eventually comes down
to a binary decision. By forcing this signal to always-true,
every chip key passes signature verification. Note that this only
disables authentication, not the locking mechanism itself and
that this attack alone again does not fully break the scheme.

Attack Unlocking Scenario Reached Goals

Probing Remote Goal 3

In-house Goal 3

Mask Modification Remote Goal 2

In-house -

Combined Remote Goals 2 and 3

In-house Goals 2 and 3

Table I: Summary of required techniques to facilitate attacks
against EPIC’s key preprocessor.

(a) Security of logic locking schemes without a key preprocessor
against various adversary capabilities.

Internal Key Probing Mask Mod. Non-Invasive

Global � (�)
Individual � (�)

(b) Security of logic locking schemes with EPIC’s key preprocessor
against various adversary capabilities.

Internal Key of Underlying Scheme Invasive Non-Invasive

Global �
Individual �

Table II: Summary of the security of logic locking with respect
to various adversary capabilities. A indicates not vulnerable,
� indicates always vulnerable. For non-invasive attacks (�)
indicates that even the best attacks do not achieve a success
rate of 100% against sophisticated schemes.

c) Combining Attacks: As shown above, mask modifi-
cation attacks can successfully disable the benefits of EPIC’s
key preprocessor if remote unlocking is used. If unlocking
is performed solely back at the design house, any of the
aforementioned attacks alone are not enough for a successful
attack. However, combining mask modification with an attack
that discloses the internal key invalidates the EPIC key
preprocessor even in that scenario. Once the key has been
obtained, e.g., through probing attacks, the adversary has two
options: he either fixes the input signals to the internal key
register to the extracted internal key, or, with only a single
modification, disables signature verification which enables the
forgery of chip keys knowing the internal key. Both options
reach Goal 2 and Goal 3 of the new attacker model. The
attack vectors for both scenarios are summarized in Table I.
While in [8], [5] an attack that modifies masks was regarded
as not realistic, we argued in Section VI-2 that minimal mask
modification is not only a viable technique but also a widely
used method in modern semiconductor manufacturing and
especially applicable to manipulate standard cell inputs/outputs.

d) Summary: In contrast to plain locking schemes without
a key preprocessor, non-invasive attacks alone have not been
successful yet in attacking EPIC’s key preprocessor. However,
we showed that EPIC’s key preprocessor can be attacked when
invasive attacks are taken into account by again targeting our
basic observations from Section IV-B. As a result, Table IIb
highlights that regardless of the underlying locking scheme,
invasive attacks can fully circumvent EPIC’s key preprocessor.

13

VIII. CONCLUSIONS — THE END OF LOGIC LOCKING

The starting point of this work was the fact that the actual
physical capabilities of adversaries have been overlooked in the
literature. A malicious foundry, as the main threat regarding
overproduction, is capable of a variety of invasive attacks in
addition to the non-invasive attacks considered in previous work.
We gave two exemplary attack vectors that are enabled by the
capabilities of a foundry-level attacker and demonstrated their
effectiveness. It is noteworthy that, somewhat counterintuitively,
it does not matter whether a scheme incorporates a global or
individual internal keys. As a key contribution, we showed that
in contrast to existing non-invasive attacks, our invasive attack
vectors stem from two fundamental observations that are given
in all logic locking schemes, regardless of scheme specifics.

In previous work, no attacks against key preprocessors were
presented. We showed that via invasive attacks, a malicious
foundry is able to invalidate the benefits of the only viable
key preprocessor which was introduced together with EPIC
[8], [5].

Table III aggregates our results. Crucially, no combination
of scheme and key preprocessor provides sufficient security
against a malicious foundry.

Scenario Non-Invasive Invasive and Non-invasive
[Previous Work] [This Work]

Plain Logic Locking Schemes (�) �
Scheme + Key Preprocessor �

Table III: Condensed overview on the security of logic locking
against invasive and non-invasive attacks. A indicates not
vulnerable, � indicates always vulnerable. For non-invasive
attacks (�) indicates that even the best attacks do not achieve
a success rate of 100% against sophisticated schemes.

Generalizing Our Findings:
The results at hand demonstrate that IP-theft on logical level,
i.e., reaching Goal 3 of the attacker model, is always possible
with a probing attack, regardless of a potential key preprocessor.
They also raise the question whether it is possible at all to thwart
overproduction with the current logic locking approaches. We
showed that schemes which use only global internal keys are
always vulnerable to probing attacks. Likewise, randomness that
is used to individualize key material can always be meaningfully
overwritten via mask modification in a way that only the
locking circuitry is affected. All security is now reduced to the
difficulty of finding the signals of interest. However, following
our case studies, there are strong indications that identifying
these signals is feasible and even automatable. First, a foundry
has full access to an error-free netlist, and knows many other
details about the target IC. Second, the regions of interest
are either key registers or entropy sources, both of which
exhibit unique characteristics which further ease identification.
Hence, foundry-level invasive attacks appear to be a major
threat against the underlying aspects of both, locking schemes
and key preprocessors, in all available configurations.

REFERENCES

[1] KPMG, “Managing the Risks of Counterfeiting in the Information
Technology Industry,” Online, 2006, https://www.agmaglobal.org/uploads/
whitePapers/KPMG-AGMA ManagingRiskWhitePaper V5.pdf.

[2] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1207–1228, Aug 2014.

[3] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellec-
tual Property Protection and Security,” in USENIX Security Symposium,
2007.

[4] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and
O. Sinanoglu, “Provably-Secure Logic Locking: From Theory to Practice,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 1601–1618.

[5] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending Piracy of Integrated
Circuits,” Computer, vol. 43, no. 10, pp. 30–38, 2010.

[6] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy Using
Reconfigurable Logic Barriers,” IEEE Design & Test of Computers, pp.
66–75, 2010.

[7] M. Yasin, B. Mazumdar, S. S. Ali, and O. Sinanoglu, “Security analysis
of logic encryption against the most effective side-channel attack: Dpa,”
in 2015 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), 2015, pp. 97–102.

[8] J. Roy, F. Koushanfar, and I. Markov, “EPIC: Ending Piracy of Integrated
Circuits,” in DATE, 2008, pp. 1069–1074.

[9] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker,
R. Tessier, and C. Paar, “On the Difficulty of FSM-based Hardware
Obfuscation,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2018, no. 3, pp. 293–330, Aug. 2018. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/7277

[10] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE Trans. CAD
of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

[11] J. Dofe and Q. Yu, “Novel dynamic state-deflection method for gate-
level design obfuscation,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 37, no. 2, pp. 273–285, 2018.

[12] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall,
“Interlocking obfuscation for anti-tamper hardware,” in CSIIRW. ACM,
2013, p. 8.

[13] S. M. Plaza and I. L. Markov, “Solving the Third-Shift Problem in
IC Piracy With Test-Aware Logic Locking,” IEEE Trans. on CAD of
Integrated Circuits and Systems, pp. 961–971, 2015.

[14] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic
Encryption Algorithms,” in IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5-7
May, 2015, 2015, pp. 137–143.

[15] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Threats
on logic locking: A decade later,” CoRR, vol. abs/1905.05896, 2019.
[Online]. Available: http://arxiv.org/abs/1905.05896

[16] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, Hardware
Security and Trust: Logic Locking as a Design-for-Trust Solution.
Cham: Springer International Publishing, 2019, pp. 353–373.

[17] M. Yasin et al., “SARLock: SAT Attack Resistant Logic Locking,” in
2016 IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2016, McLean, VA, USA, May 3-5, 2016, 2016, pp.
236–241.

[18] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,”
in CHES. Springer, 2016, pp. 127–146.

[19] M. Yasin et al., “Security Analysis of Anti-Sat,” in 22nd Asia and South
Pacific Design Automation Conference, ASP-DAC 2017, Chiba, Japan,
January 16-19, 2017, 2017, pp. 342–347.

[20] X. Xu et al., “Novel Bypass Attack and BDD-based Tradeoff Analysis
Against All Known Logic Locking Attacks,” in Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, 2017, pp. 189–210.

[21] Y. Shen and H. Zhou, “Double Dip: Re-Evaluating Security of Logic En-
cryption Algorithms,” in Proceedings of the on Great Lakes Symposium
on VLSI 2017. ACM, 2017, pp. 179–184.

[22] K. Azar, H. Kamali, H. Homayoun, and A. Sasan, “SMT
Attack: Next Generation Attack on Obfuscated Circuits with
Capabilities and Performance Beyond the SAT Attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2019, no. 1, pp. 97–122, Nov. 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7335

https://www.agmaglobal.org/uploads/whitePapers/KPMG-AGMA_ManagingRiskWhitePaper_V5.pdf
https://www.agmaglobal.org/uploads/whitePapers/KPMG-AGMA_ManagingRiskWhitePaper_V5.pdf
https://tches.iacr.org/index.php/TCHES/article/view/7277
http://arxiv.org/abs/1905.05896
https://tches.iacr.org/index.php/TCHES/article/view/7335

14

[23] K. Juretus and I. Savidis, “Increasing the sat attack resiliency of in-cone
logic locking,” in 2019 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2019, pp. 1–5.

[24] A. Sengupta, B. Mazumdar, M. Yasin, and O. Sinanoglu, “Logic locking
with provable security against power analysis attacks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2019.

[25] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy
identification,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2019, pp. 540–545.

[26] D. Sirone and P. Subramanyan, “Functional Analysis Attacks on
Logic Locking,” CoRR, vol. abs/1811.12088, 2018. [Online]. Available:
http://arxiv.org/abs/1811.12088

[27] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic Locking
for Secure Outsourced Chip Fabrication: A New Attack and Provably
Secure Defense Mechanism,” arXiv preprint arXiv:1703.10187, 2017.

[28] F. Yang, M. Tang, and O. Sinanoglu, “Stripped functionality logic locking
with hamming distance-based restore unit (sfll-hd) – unlocked,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 10, pp.
2778–2786, 2019.

[29] P. Chakraborty, J. Cruz, and S. Bhunia, “Surf: Joint structural functional
attack on logic locking,” in 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2019, pp. 181–190.

[30] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: machine learning
guided structural analysis attack on hardware obfuscation,” CoRR, vol.
abs/1809.10743, 2018.

[31] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[32] M. Yasin and O. Sinanoglu, “Evolution of Logic Locking,” in Very Large
Scale Integration (VLSI-SoC), 2017 IFIP/IEEE International Conference
on. IEEE, 2017, pp. 1–6.

[33] S. Dupuis and M. Flottes, “Logic Locking: A Survey of Proposed Methods
and Evaluation Metrics,” J. Electronic Testing, vol. 35, no. 3, pp. 273–
291, 2019.

[34] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karrl, “Security Analysis of
Logic Obfuscation,” in The 49th Annual Design Automation Conference
2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, 2012, pp. 83–
89.

[35] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Logic Encryption: A
Fault Analysis Perspective,” in 2012 Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, pp. 953–958.

[36] J. Rajendran et al., “Fault Analysis-Based Logic Encryption,” IEEE Trans.
Computers, pp. 410–424, 2015.

[37] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-based
Cost-Effective, Secure Logic Locking,” in VLSI Test Symposium (VTS),
2018 IEEE 36th. IEEE, 2018, pp. 1–6.

[38] M. Yasin, J. J. V. Rajendran, O. Sinanoglu, and R. Karri, “On Improving
the Security of Logic Locking,” IEEE Trans. on CAD of Integrated
Circuits and Systems, pp. 1411–1424, 2016.

[39] R. Karmakar, N. Prasad, S. Chattopadhyay, R. Kapur, and I. Sengupta,
“A New Logic Encryption Strategy Ensuring Key Interdependency,” in
30th International Conference on VLSI Design and 16th International
Conference on Embedded Systems, VLSID 2017, Hyderabad, India,
January 7-11, 2017, 2017, pp. 429–434.

[40] M. Yasin et al., “What to lock?: Functional and parametric locking,” in
Proceedings of the on Great Lakes Symposium on VLSI 2017, Banff,
AB, Canada, May 10-12, 2017, 2017, pp. 351–356.

[41] H. Zhou, Y. Shen, and A. Rezaei, “Vulnerability and remedy of stripped
function logic locking,” Cryptology ePrint Archive, Report 2019/139,
2019, https://eprint.iacr.org/2019/139.

[42] S. Dupuis, P. S. Ba, G. Di Natale, M. L. Flottes, and B. Rouzeyre,
“A Novel Hardware Logic Encryption Technique for Thwarting Illegal
Overproduction and Hardware Trojans,” in 2014 IEEE 20th International
On-Line Testing Symposium (IOLTS), 2014, pp. 49–54.

[43] W. P. Griffin, A. Raghunathan, and K. Roy, “CLIP: Circuit Level
IC Protection Through Direct Injection of Process Variations,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20,
no. 5, pp. 791–803, 2012.

[44] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic
pufs and their use for ip protection,” in International workshop on
cryptographic hardware and embedded systems. Springer, 2007, pp.
63–80.

[45] G. E. Suh and S. Devadas, “Physical unclonable functions for de-
vice authentication and secret key generation,” in Design Automation
Conference, 2007. DAC’07. 44th ACM/IEEE. IEEE, 2007, pp. 9–14.

[46] B. Lippmann, M. Werner, N. Unverricht, A. Singla, P. Egger, A. Dübotzky,
H. Gieser, M. Rasche, O. Kellermann, and H. Graeb, “Integrated Flow
for Reverse Engineering of Nanoscale Technologies,” in Proceedings of
the 24th Asia and South Pacific Design Automation Conference. ACM,
2019, pp. 82–89.

[47] R. Torrance, “The State-Of-The-Art in IC Reverse Engineering,” in
CHES. Springer, 2009, pp. 363–381.

[48] R. Schalangen, R. Leihkauf, U. Kerst, and C. Boit, “Backside E-Beam
Probing on Nano Scale Devices,” in Test Conference, 2007. ITC 2007.
IEEE International. IEEE, 2007, pp. 1–9.

[49] C. Boit, C. Helfmeier, D. Nedospasov, and A. Fox, “Ultra high precision
circuit diagnosis through seebeck generation and charge monitoring,” in
Physical and Failure Analysis of Integrated Circuits (IPFA), 2013 20th
IEEE International Symposium on the. IEEE, 2013, pp. 17–21.

[50] U. Kindereit, “Fundamentals and future applications of laser voltage
probing,” in Reliability Physics Symposium, 2014 IEEE International.
IEEE, 2014, pp. 3F–1.

[51] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the power of
optical contactless probing: Attacking bitstream encryption of fpgas,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 1661–1674.

[52] C. Boit, C. Helfmeier, and U. Kerst, “Security risks posed by modern
ic debug and diagnosis tools,” in Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2013 Workshop on. IEEE, 2013, pp. 3–11.

[53] K. Edinger, H. Becht, R. Becker, V. Bert, V. A. Boegli, M. Budach,
S. Göhde, J. Guyot, T. Hofmann, O. Hoinkis, A. Kaya, H. W. Koops,
P. Spies, B. Weyrauch, and J. Bihr, “A novel electron-beam-based
photomask repair tool,” Proc.SPIE, vol. 5256, pp. 5256 – 5256 – 10,
2003. [Online]. Available: https://doi.org/10.1117/12.532866

[54] K. Edinger, H. Becht, J. Bihr, V. Boegli, M. Budach, T. Hofmann,
H. W. P. Koops, P. Kuschnerus, J. Oster, P. Spies, and B. Weyrauch,
“Electron-beam-based photomask repair,” Journal of Vacuum Science &
Technology B: Microelectronics and Nanometer Structures Processing,
Measurement, and Phenomena, vol. 22, no. 6, pp. 2902–2906, 2004.
[Online]. Available: https://avs.scitation.org/doi/abs/10.1116/1.1808711

[55] T. Bret, R. Jonckheere, D. Van den Heuvel, C. Baur, M. Waiblinger,
and G. Baralia, “Closing the Gap for EUV Mask Repair,” in Extreme
Ultraviolet (EUV) Lithography III, vol. 8322. International Society for
Optics and Photonics, 2012, p. 83220C.

[56] E. Sperling, “Mask Repair Enters The Spotlight,” Online, October 2012,
https://semiengineering.com/mask-repair-enters-the-spotlight/.

[57] M. Fyrbiak, S. Wallat, P. Swierczynski, M. Hoffmann, S. Hoppach,
M. Wilhelm, T. Weidlich, R. Tessier, and C. Paar, “HAL-The Missing
Piece of the Puzzle for Hardware Reverse Engineering, Trojan Detection
and Insertion,” IEEE Transactions on Dependable and Secure Computing,
2018.

[58] S. Amir, B. Shakya, X. Xu, Y. Jin, S. Bhunia, M. Tehranipoor, and
D. Forte, “Development and Evaluation of Hardware Obfuscation
Benchmarks,” Journal of Hardware and Systems Security, vol. 2, no. 2,
pp. 142–161, 2018.

[59] G. T. Becker et al., “Stealthy Dopant-Level Hardware Trojans,” in CHES.
Springer, 2013, pp. 197–214.

[60] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in Proceedings
of the 17th ACM conference on Computer and communications security.
ACM, 2010, pp. 237–249.

[61] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “Puf modeling
attacks on simulated and silicon data,” IEEE Transactions on Information
Forensics and Security, vol. 8, no. 11, pp. 1876–1891, 2013.

[62] S. M. Trimberger and J. J. Moore, “Fpga security: Motivations, features,
and applications,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1248–
1265, 2014.

http://arxiv.org/abs/1811.12088
https://eprint.iacr.org/2019/139
https://doi.org/10.1117/12.532866
https://avs.scitation.org/doi/abs/10.1116/1.1808711
https://semiengineering.com/mask-repair-enters-the-spotlight/

15

APPENDIX

A. Case Study: Probing Attack

In this section, we provide additional explanation and figures
on the internals and output of our case study for finding the
key register in order to conduct a probing attack. Recall that
we applied our algorithm to three benchmark circuits. Listing 1
shows the common output at the start of the analysis for all
three circuits: starting from the FFs at the interface outputs,
succeeding FFs are analyzed as potential starting points of
shift registers.

Listing 1: Common output of our algorithm for all three netlists
at the beginning of the analysis.
searching from rx_REG_reg_4_
analyzing potential chain, starting with

data_reg_out_reg_4_
analyzing potential chain, starting with

key_reg_out_reg_4_
searching from rx_REG_reg_3_
analyzing potential chain, starting with

data_reg_out_reg_3_
analyzing potential chain, starting with

key_reg_out_reg_3_
searching from rx_REG_reg_5_
analyzing potential chain, starting with

data_reg_out_reg_5_
analyzing potential chain, starting with

key_reg_out_reg_5_
searching from rx_REG_reg_6_
analyzing potential chain, starting with

data_reg_out_reg_6_
analyzing potential chain, starting with

key_reg_out_reg_6_
searching from rx_REG_reg_2_
analyzing potential chain, starting with

data_reg_out_reg_2_
analyzing potential chain, starting with

key_reg_out_reg_2_
searching from rx_REG_reg_1_
analyzing potential chain, starting with

data_reg_out_reg_1_
analyzing potential chain, starting with

key_reg_out_reg_1_
searching from rx_REG_reg_0_
analyzing potential chain, starting with

data_reg_out_reg_0_
analyzing potential chain, starting with

key_reg_out_reg_0_
searching from rx_REG_reg_7_
analyzing potential chain, starting with

data_reg_out_reg_7_
analyzing potential chain, starting with

key_reg_out_reg_7_

Listings 2, 3, and 4 show the remaining output of the
analysis for the circuits c1908-NS3550, c3540-NR1820, and
c6288-NC2240 respectively. The netlists where synthesized
with default options, resulting in only D-FFs being used in the
design. As a consequence, filtering the found shift registers
by common control signals was not possible without control
path analysis. However, all FFs were preceded by a gate which
basically acted as an input multiplexer between the current
output, i.e., no change in the internal state, and a different input
signal. Our analysis had to be adapted to allow for a single
combinational gate between FFs in a shift register. Still, the data
register was not detected, since it has multiple combinational
gates between FFs in order to be loaded from memory and
from the output of the protected logic.

Listing 2: Output of our algorithm for the c1908-NS3550
netlist.
found 16 shift registers
grouped the shift registers into 3 groups
analyzing group of 4 0-to-4-bit shift registers
contains 6 bits in total -> too small for a key

analyzing group of 8 43-to-47-bit shift registers
contains 355 bits in total -> key register

candidate
success: register 0 contains only key FFs
success: register 1 contains only key FFs
success: register 2 contains only key FFs
success: register 3 contains only key FFs
success: register 4 contains only key FFs
success: register 5 contains only key FFs
success: register 6 contains only key FFs
success: register 7 contains only key FFs

analyzing group of 4 4-to-8-bit shift registers
contains 20 bits in total -> too small for a key

verification result: key fully identified

Listing 3: Output of our algorithm for the c3540-NR1820
netlist.
found 16 shift registers
grouped the shift registers into 3 groups
analyzing group of 8 22-to-26-bit shift registers
contains 182 bits in total -> key register

candidate
success: register 0 contains only key FFs
success: register 1 contains only key FFs
success: register 2 contains only key FFs
success: register 3 contains only key FFs
success: register 4 contains only key FFs
success: register 5 contains only key FFs
success: register 6 contains only key FFs
success: register 7 contains only key FFs

analyzing group of 7 5-to-9-bit shift registers
contains 49 bits in total -> too small for a key

analyzing group of 1 0-to-4-bit shift registers
contains 2 bits in total -> too small for a key

verification result: key fully identified

Listing 4: Output of our algorithm for the c6288-NC2240
netlist.
found 16 shift registers
grouped the shift registers into 3 groups
analyzing group of 2 3-to-7-bit shift registers
contains 8 bits in total -> too small for a key

analyzing group of 8 27-to-31-bit shift registers
contains 224 bits in total -> key register

candidate
success: register 0 contains only key FFs
success: register 1 contains only key FFs
success: register 2 contains only key FFs
success: register 3 contains only key FFs
success: register 4 contains only key FFs
success: register 5 contains only key FFs
success: register 6 contains only key FFs
success: register 7 contains only key FFs

analyzing group of 6 0-to-4-bit shift registers
contains 13 bits in total -> too small for a key

verification result: key fully identified

16

B. Case Study: Mask Modification Attack

In this section, we provide additional explanation and figures
on the internals and output of our case study. We synthesized
the netlists with the PUF signals as external inputs. Then, post
synthesis we manually removed said external input signals
and instead instantiated the “custom standard cells” that drive
the respective wires. This way we were able to facilitate the
case study netlist without a semi-custom design flow. While
all locked combinational cones consist of multiple gates on
behavioral level, the synthesizer managed to merge them into
less standard cells (cf. respective netlist files).

Recall that we applied our algorithm to two variants of
the CLIP-locked netlist. In the first variant, all PUF outputs
are directly connected to switchboxes. PUF 0 and PUFs 3
were also connected to dummy registers through combinational
logic, which must not be affected by a mask modification. The
surrounding circuitry of each PUF in this netlist is shown in
Figure 13. Arrows indicate wires between cells and the names
correspond to the cell names of the netlist. The red cells are
unrelated to CLIP and thus must not be affected by a mask
modification attack.

U2245U1620

puf inst 0 key0

U1895

puf inst 1 key1

U1953

U1952

puf inst 2 key2

U1913U1621

puf inst 3 key3

U1932

puf inst 4 key4

U1957U1956

U1955

puf inst 5 key5

U1774

U1773

puf inst 6 key6

U1888

U1887

puf inst 7 key7

Figure 13: Connectivity of the PUF-related gates in the first
variant of the CLIP netlist.

Listing 5 shows the output of our algorithm on the first netlist
variant. During path traversal, the number in braces indicates
the distance from the respective PUF in cells. As required
for PUF 0 and PUF 3, specific inputs of cells that succeed
the PUF are returned as mask modification targets since both
PUFs are also connected to unrelated circuitry which must not
be affected. For the remaining PUFs the algorithm correctly
identified that a modification directly at the PUF output is
sufficient.

Listing 5: Output of our algorithm on the first variant of the
CLIP netlist.
found 92 key-dependent gates
traversing path from puf_inst_0
traced path(s) puf_inst_0 (0), U2245 (1)

traversing path from puf_inst_1
traced path(s) puf_inst_1 (0), U1895 (1)

traversing path from puf_inst_7
traced path(s) puf_inst_7 (0), U1887 (1), U1888

(2)
traversing path from puf_inst_6

traced path(s) puf_inst_6 (0), U1774 (1), U1773
(1), U1774 (2)

traversing path from puf_inst_5
traced path(s) puf_inst_5 (0), U1955 (1), U1956

(2), U1957 (3)
traversing path from puf_inst_4

traced path(s) puf_inst_4 (0), U1932 (1)
traversing path from puf_inst_3

traced path(s) puf_inst_3 (0), U1913 (1)
traversing path from puf_inst_2

traced path(s) puf_inst_2 (0), U1953 (1), U1952
(1), U1953 (2)

analyzing path starting with puf_inst_7:
fix output of puf_inst_7

analyzing path starting with puf_inst_6:
fix output of puf_inst_6

analyzing path starting with puf_inst_5:
fix output of puf_inst_5

analyzing path starting with puf_inst_4:
fix output of puf_inst_4

analyzing path starting with puf_inst_3:
fix input B of U1913

analyzing path starting with puf_inst_2:
fix output of puf_inst_2

analyzing path starting with puf_inst_1:
fix output of puf_inst_1

analyzing path starting with puf_inst_0:
fix input B of U2245

The second netlist variant includes a few changes which are
shown in Figure 14. First, all PUFs are connected to a buffer be-
fore reaching the switchboxes or other circuitry. Second, PUF 1
and PUF 5 were disconnected and the respective switchboxes
were instead connected to PUF 0 and PUF 6 respectively. This
results in two instances where two switchboxes are controlled
by a single PUF. Furthermore, PUF 0 is now connected to two
switchboxes and unrelated circuitry. Again, the red cells are
unrelated to CLIP and thus must not be affected by a mask
modification attack.

Listing 6 shows the output of our algorithm on the second
netlist variant. Again the locking-unrelated cells were correctly
identified and correct modification locations were returned.

17

U2245U1620U1895

puf inst 0

puf buf 0 key0key1

U1953

U1952

puf buf 2

puf inst 2

key2

U1913U1621

puf buf 3

puf inst 3

key3

U1774

U1773

U1957U1956

U1955

puf inst 6

puf buf 6 key5key6

U1932

puf buf 4

puf inst 4

key4

U1888

U1887

puf buf 7

puf inst 7

key7

Figure 14: Connectivity of the PUF-related gates in the second
variant of the CLIP netlist.

Listing 6: Output of our algorithm on the second variant of
the CLIP netlist.
found 92 key-dependent gates
traversing path from puf_inst_7
traced path(s) puf_inst_7 (0), puf_buf_7 (1), U1887

(2), U1888 (3)
traversing path from puf_inst_6

traced path(s) puf_inst_6 (0), puf_buf_6 (1),
U1774 (2), U1773 (2), U1955 (2), U1774 (3),
U1956 (3), U1957 (4)

traversing path from puf_inst_5
no key-dependent gates were hit

traversing path from puf_inst_4
traced path(s) puf_inst_4 (0), puf_buf_4 (1),

U1932 (2)
traversing path from puf_inst_3

traced path(s) puf_inst_3 (0), puf_buf_3 (1),
U1913 (2)

traversing path from puf_inst_2
traced path(s) puf_inst_2 (0), puf_buf_2 (1),

U1953 (2), U1952 (2), U1953 (3)
traversing path from puf_inst_0

traced path(s) puf_inst_0 (0), puf_buf_0 (1),
U1895 (2), U2245 (2)

traversing path from puf_inst_1
no key-dependent gates were hit

analyzing path starting with puf_inst_7:
fix output of puf_inst_7

analyzing path starting with puf_inst_6:
fix output of puf_inst_6

analyzing path starting with puf_inst_4:
fix output of puf_inst_4

analyzing path starting with puf_inst_3:
fix input B of U1913

analyzing path starting with puf_inst_2:
fix output of puf_inst_2

analyzing path starting with puf_inst_0:
fix input A3 of U1895
fix input B of U2245

	Introduction
	Background on Logic Locking
	Motivation and Objectives
	Combinational Logic Locking
	Sequential Logic Locking
	Notation and Terminology
	Attacker Model in Previous Work

	Related Work on Attacks
	Attacks on Combinational Logic Locking
	Attacks on Sequential Logic Locking

	The Current State of Logic Locking Schemes
	High-Level View on Logic Locking
	Locking Schemes with a Global Internal Key
	Locking Schemes with Individual Internal Keys
	Key Preprocessors

	Common Fundamental Aspects
	Internal Key Handling
	Individualization

	A Revised Attacker Model
	The Attacker in Previous Work
	A Foundry-Level Attacker Model
	Adversarial Capabilities
	Defining a Successful Attack

	New Attack Vectors on Logic Locking
	Attack Vector: Probing Registers
	Attack Vector: Minimal Mask Modification

	Attack Vector Evaluation
	Probing Attacks
	Mask Modification Attacks
	Discussion

	Attacking Key Preprocessors
	LECs
	EPIC's Key Preprocessor

	Conclusions — The End of Logic Locking
	References
	Appendix
	Case Study: Probing Attack
	Case Study: Mask Modification Attack

