951 research outputs found

    Intrusion Detection System using Bayesian Network Modeling

    Get PDF
    Computer Network Security has become a critical and important issue due to ever increasing cyber-crimes. Cybercrimes are spanning from simple piracy crimes to information theft in international terrorism. Defence security agencies and other militarily related organizations are highly concerned about the confidentiality and access control of the stored data. Therefore, it is really important to investigate on Intrusion Detection System (IDS) to detect and prevent cybercrimes to protect these systems. This research proposes a novel distributed IDS to detect and prevent attacks such as denial service, probes, user to root and remote to user attacks. In this work, we propose an IDS based on Bayesian network classification modelling technique. Bayesian networks are popular for adaptive learning, modelling diversity network traffic data for meaningful classification details. The proposed model has an anomaly based IDS with an adaptive learning process. Therefore, Bayesian networks have been applied to build a robust and accurate IDS. The proposed IDS has been evaluated against the KDD DAPRA dataset which was designed for network IDS evaluation. The research methodology consists of four different Bayesian networks as classification models, where each of these classifier models are interconnected and communicated to predict on incoming network traffic data. Each designed Bayesian network model is capable of detecting a major category of attack such as denial of service (DoS). However, all four Bayesian networks work together to pass the information of the classification model to calibrate the IDS system. The proposed IDS shows the ability of detecting novel attacks by continuing learning with different datasets. The testing dataset constructed by sampling the original KDD dataset to contain balance number of attacks and normal connections. The experiments show that the proposed system is effective in detecting attacks in the test dataset and is highly accurate in detecting all major attacks recorded in DARPA dataset. The proposed IDS consists with a promising approach for anomaly based intrusion detection in distributed systems. Furthermore, the practical implementation of the proposed IDS system can be utilized to train and detect attacks in live network traffi

    EVHS - Elastic Virtual Honeypot System for SDNFV-Based Networks

    Get PDF
    The SDNFV-based network has leveraged the advantages of software-defined networking (SDN) and network-function virtualization (NFV) to become the most prominent network architecture. However, with the advancement of the SDNFV-based network, more attack types have emerged. This research focuses on one of the methods (use of the honeypot system) of preventing these attacks on the SDNFV-based network. We introduce an SDNFV-based elastic virtual honeypot system (EVHS), which not only resolves problems of other current honeypot systems but also employs a new approach to efficiently manage and control honeypots. It uses a network-intrusion-detection system (NIDS) at the border of the network to detect attacks, leverages the advantages of SDN and NFV to flexibly generate honeypots, and connects attackers to these honeypots by using a moving-target defense mechanism. Furthermore, we optimize the system to efficiently reuse the available honeypots after the attacks are handled. Experimental results validate that the proposed system is a flexible and efficient approach to manage and provide virtual honeypots in the SDNFV-based network; the system can also resolve the problems encountered by current honeypot systems

    Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers

    Full text link
    Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, in this paper we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers. In particular, we build a novel meta-classifier and train it to hack other classifiers, obtaining meaningful information about their training sets. This kind of information leakage can be exploited, for example, by a vendor to build more effective classifiers or to simply acquire trade secrets from a competitor's apparatus, potentially violating its intellectual property rights

    LAMP: Prompt Layer 7 Attack Mitigation with Programmable Data Planes

    Full text link
    While there are various methods to detect application layer attacks or intrusion attempts on an individual end host, it is not efficient to provide all end hosts in the network with heavy-duty defense systems or software firewalls. In this work, we leverage a new concept of programmable data planes, to directly react on alerts raised by a victim and prevent further attacks on the whole network by blocking the attack at the network edge. We call our design LAMP, Layer 7 Attack Mitigation with Programmable data planes. We implemented LAMP using the P4 data plane programming language and evaluated its effectiveness and efficiency in the Behavioral Model (bmv2) environment

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore