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Abstract: The SDNFV-based network has leveraged the 

advantages of software-defined networking (SDN) and 

network-function virtualization (NFV) to become the most 

prominent network architecture. However, with the 

advancement of the SDNFV-based network, more attack 

types have emerged. This research focuses on one of the 

methods (use of the honeypot system) of preventing these 

attacks on the SDNFV-based network. We introduce an 

SDNFV-based elastic virtual honeypot system (EVHS), 

which not only resolves problems of other current honeypot 

systems but also employs a new approach to efficiently 

manage and control honeypots. It uses a 

network-intrusion-detection system (NIDS) at the border of 

the network to detect attacks, leverages the advantages of 

SDN and NFV to flexibly generate honeypots, and connects 

attackers to these honeypots by using a moving-target defense 

mechanism. Furthermore, we optimize the system to 

efficiently reuse the available honeypots after the attacks are 

handled. Experimental results validate that the proposed 

system is a flexible and efficient approach to manage and 

provide virtual honeypots in the SDNFV-based network; the 

system can also resolve the problems encountered by current 

honeypot systems. 

Keywords: Honeypot system, network intrusion detection 

system, software-defined networking, network function 

virtualization. 
 

1. Introduction 
 

In recent years, several changes have been made in com-puter 

networking, and many opportunities have arisen for 

researchers and industries, especially with the development of 

software-defined networking (SDN) and network-function 

virtualization (NFV). SDN represents a new architecture that 

decouples the data plane and control plan to centralize 

mon-itoring and control the network traffic [1-4]. In NFV, 

network functions are separated from hardware to decrease 

the cost and time involved in network-service deployment 

[5][6]. The SDNFV-based network is created using a 

combination of these two techniques; it offers more 

advantages in terms of management and operation than those 

offered by the traditional network [7]. 

Besides the growth of the network, the number of net-work 

attacks also increases significantly. Security tools, such as the 

network intrusion detection system (NIDS), network intrusion 

prevention system (NIPS), firewall, and honeypot system, 

should also be deployed to prevent these attacks. However, 

many problems are encountered when deploying these tools 

(especially the honeypot system). The honeypot system is a 

proactive defense mechanism that is built to connect attackers 

with fabricated hosts (honeypots) instead of real ones [8] – 

[14]. Once attackers enter the honeypots, their behaviors are 

monitored, and the administrators can detect any suspicious 

actions. 

Several issues that can affect the deployment of current 

hon-eypot systems remain to be addressed. The main 

drawbacks are listed subsequently: 

• Costs: Current honeypot systems always need to 

create several available honeypots, both physical and 

virtual, to become proactive. These honeypots 

should be ready at any time to handle any new 

attackers, which implies that the systems should 

create many honeypots beforehand. However, it is 

difficult to scale the definite size of the honeypot 

system; further, the capability of such a system to 

realize large-scale deployment is limited owing to its 

infrastructure and operating costs. 

• Adaptability: Computer networking has gained 

signifi-cant interest over the past few years; this has 

led to many new types of services and network 

attacks. Each honeypot should only handle one 

attack type, and current honeypot systems cannot 

quickly adapt to the changes in network topologies 

and attack types. 

Thus, the current honeypot systems have several 

disadvan-tages, and it is difficult to deploy them in future 

network archi-tectures such as the SDNFV-based networks. 

This necessitates the development of a new honeypot system 

that can address all these issues. 

Herein, we propose a new elastic virtual honeypot system to 

resolve the critical issues discussed earlier in the 

SDNFV-based network. The proposed system leverages the 

advantages of emerging technologies, SDN (controls the 

network traffic) and NFV (manages the virtual infrastructure). 

It enhances the current architecture by generating and 

managing virtual honeypots; it monitors the incoming traffic 

in the SDNFV-based network through an NIDS and then 

decides to generate a new honeypot to handle the network 

traffic from a suspi-cious address. If honeypots are available, 

the proposed system automatically redirects the attack traffic 

to them by applying a moving-target defense mechanism. 

These algorithms help in handling the issues with the scale of 

the honeypot system. We solve the problem associated with 

many attack types by using the database and reusing the 

honeypots. The information of the honeypot, attacker, and 

attack type is stored in a database. Each honeypot can handle 

one attack type from one attacker, and after that attacker gets 

blocked or disappears, the proposed system reuses the 

honeypot for the same attack type in the future. Using these 

algorithms, the issues discussed earlier can be resolved, and 

the efficiency and performance of the proposed system can be 

improved. 
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The major contributions of this research are summarized 

subsequently: 

• The problems of the current honeypot systems (i.e., 

cost and adaptation) are described. 

• A new elastic virtual honeypot system, based on SDN 

and NFV technologies, which can detect network 

attacks us-ing an NIDS, generate and manage 

honeypots elastically, use the moving-target defense 

mechanism to connect attackers to honeypots, and 

reuse honeypots efficiently, is proposed. It can 

improve resource management and resolve the 

problems discussed earlier. 

• Several experiments are conducted to evaluate the 

perfor-mance and efficiency of the new system. 

The remainder of this paper is organized as follows. Section 2 

presents brief introductions to the honeypot system, 

SDNFV-based network, and moving-target defense 

mechanism. Section 3 discusses research related to this study. 

The design of the proposed system is detailed in Section 4. 

Section 5 focuses on the detailed implementation and 

evaluation of the proposed system. Finally, the conclusion and 

scope for future research are presented in Section 6. 
 

2. Background Knowledge 
 

    2.1  SDNFV-based Network 
 

In the past few years, both academia and the industry have 

continuously conducted research on SDN and NFV 

technolo-gies owing to their potentials. SDN enables network 

program-ming by decoupling the control plane and the data 

plane. The data plane is a simple forwarding device that 

receives forwarding rules from the controller in the control 

plane. The first SDN protocol that allows a single controller to 

control and manipulate the network infrastructure is 

OpenFlow. The NFV is an architecture that decouples the 

network service functions, such as routing, load balancing, 

and firewalls, from the dedicated hardware. This implies that 

the network functions are packaged in the form of virtual 

machines (VMs) on commodity hardware and can easily 

control and manage the adaptation as per the network 

requirements. SDN and NFV improve the speed of 

deployment of network functions and scalability; further, they 

utilize network resources effectively. Furthermore, Wireless 

Sensor Network (WSN) can also be considered as similar to 

SDNFV-based network, where gate-ways or controllers 

control all network operations and each end device performs 

as the network function [15]. 

The SDNFV-based network architecture is detailed in Figure 

1, which includes the SDN controller, NFV orchestrator 

(NFV-O), NFV infrastructure, and forwarding devices [7]. 

The SDN controller determines the network traffic flows and 

commu-nicates with the forwarding devices (SDN switches) 

to apply policies from the control plane to the data plane. The 

NFV infrastructure includes virtualized network functions 

(VNFs), which run as VMs on hypervisors and physical 

servers. The NFV-O is responsible for lifecycle management 

including the instantiation, scaling, and termination of VNFs. 

It is integrated with the SDN controller through northbound 

interfaces or APIs. After checking the policy requirements 

and generating the network configuration and topology, the 

NFV-O produces optimal function assignments and assigns 

the function to certain VMs in the optimized path; this is 

known as service function chaining. 

 
Figure 1. SDNFV-based network architecture. 

 

    2.2  Honeypot System 
 

The honeypot system employs a proactive defense 

mech-anism that is built to connect attackers with fabricated 

hosts (honeypots) instead of real ones [8] – [14]. Attackers 

think that they are connecting with real victims, and they 

begin their attacks. A honeypot can be classified as a 

low-interaction honeypot (LIH), medium-interaction 

honeypot (MIH), or high-interaction honeypot (HIH) on the 

basis of its level of in-teraction [8] – [12]. The LIH only 

simulates services that are frequently requested by attackers; 

these include a remote desktop or a secure shell (SSH). The 

MIH partially or fully implements services to emulate a 

well-known vendor’s imple-mentation. The HIH is most 

similar to a real system that runs various applications such as 

web servers and databases. The HIH aims to capture the 

maximum amount of information of the attackers’ techniques. 

Before the proposal of the virtual honeypot system, there were 

several honeypot projects, called honeynet (generations 

I, II, and III) [13] – [14]. The deployment of these generations 

of honeynet was always based on physical servers and 

network devices, which implied that one physical server can 

only support one honeypot. This architecture is neither 

scalable nor flexible; further, it is too difficult to redeploy 

after security experts collect all the adversary information. 

Therefore, the virtual honeypot architecture resolves this 

problem; it runs multiple virtual honeypots on one physical 

host and reduces the other infrastructure costs. 

A honeypot system can be integrated with an NIDS while it 

works as the detection sensor. The honeypot system helps 

security experts detect suspicious activities of network 

packets that do not adhere to the rules of the NIDS. It can 

support the NIDS in the detection and prevention of attacks 

and increase the detection accuracy. 
 

    2.3  Moving Target Defense Mechanism 
 

This mechanism was exhibited in the SDN environment, 

which is detailed in Figure 2. When it is detected that an 

attacker is attempting to send exploit code to the victim host 

(1 and 2), the controller commands the switch to redirect the 

network traffic to the shadow victim (3). The shadow victim 

then responds to the attacker’s request (4 and 5). The attacker 

is deceived into communicating with the shadow victim 

instead of the real one. 

The moving-target defense mechanism allows security 

ex-perts to create, analyze, evaluate, and deploy mechanisms 

and strategies for the victim to continuously shift and change 

properties over time for increasing the complexity and costs 

for attackers. It also limits the vulnerability of the host to 
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attacks, and it increases the system resilience. The recently 

proposed MTDM is feasible for reducing the percentage of 

successful attacks by altering or diversifying the attributes or 

parameters of a protected system. If MTDM is applied to a 

security system, attackers will encounter more difficulties in 

launching attacks, which is one of the game-changing themes 

[16], [17]. 

 
Figure 2. Moving-target defense mechanism. 

 

3. Related Works 
 

    3.1  Honeypot System 
 

Several solutions to address the problems of cost and 

complexity of the virtual honeypot system have been 

proposed. The hybrid honeypot system was proposed; it 

includes multiple levels of honeypots, such as the LIH at the 

front end and HIH at the back end [9], [10]. Once sufficient 

information is collected from the LIH, the hybrid system 

redirects the current traffic to the HIH. However, because 

both honeypot types exist simultaneously in the hybrid 

system, the resource consumption and complex operations are 

more. W. Fan [11] proposed a honeypot architecture that can 

dynamically reconfigure virtual honeypots; both Snort and 

Honeybrid Gateway were used to make decisions for the 

packets. The inbound traffic needs to travel through two filter 

layers; then, the back end can be easily flooded by invalid 

data. This architecture also requires the preinstallation of all 

the virtual honeypot instances, which does not resolve the cost 

problem. T. Lengyel [18] introduced a hybrid honeynet that is 

based on the clone feature of the Xen virtualization platform; 

a hybrid honeynet was used to perform routing between the 

attacker and a combination of LIH and HIH. However, this 

solution decreases the throughput because each packet is 

duplicated, which implies that the network performance is 

also affected. 
 

    3.2  Honeypot System In SDNFV-based Network 

Many proposals have been made to improve the honeypot 

system using features and benefits of SDN and NFV. W. Han 

[19] proposed HoneyMix, which is a hybrid honeypot system 

running on the SDN-enabled network. When it receives 

requests from an attacker, HoneyMix redirects these requests 

to all the available honeypot instances and selects the most 

appropriate honeypot to respond to the attacker. However, if 

the number of attacks is larger than the number of honey-pots, 

HoneyMix cannot continue handling new attackers. This 

problem also exists in the proposal made by B. Park [20], but 

this proposal only generates a new honeypot when a new 

attack is detected. S. Kyung et al. [21] presented a newer 

version of HoneyMix, which is called HoneyProxy. There is a 

new proxy module that operates in three modes: transparent 

mode (T-Mode), multicast mode (M-Mode), and relay mode 

(R-Mode). Each packet, coming from the outside, needs to be 

inspected and then forwarded to the network. Because 

HoneyProxy works as a reverse proxy between honeypots and 

attackers, this approach also introduces a bottleneck for the 

SDN controller. W. Fan [22] proposed a method of 

transparently redirecting traffic from the LIH to HIH. At the 

3-way handshake phase, the SYN packet is stored at the front 

end of the application. Hence, this system is highly 

susceptible to an SYN flood attack. The packets also need to 

go through the SDN application and Snort (IDS) to make a 

decision that creates delays in packet processing. 
 

4. System Design 
 

In this section, we analyze and describe the objectives and 

design (including the main components) of the proposed 

system, respectively. 
 

    4.1  Objectives 
 

To address the vulnerabilities discussed in Section 2.2, the 

proposed system needs to achieve the following objectives: 

• Adaptability: it should be able to adapt to the changes 

in network topology and attack types. 

• Security: it must ensure that attackers do not reach real 

hosts. 

• High Performance: it needs to generate new 

honeypots or connect attackers to available 

honeypots immediately. 

• Efficiency: it needs to manage honeypots effectively 

to 

• reduce the costs and handle a new attack at any time. 

• Applicability: it should be easily applicable to the real 

system. 

To achieve these objectives, a few assumptions need to be 

relied upon for designing the system. First, we eliminate the 

possibility of any compromised components in the network. 

Furthermore, the connections between network entities need 

to be reliable. If attackers can access switches or controllers, 

all the algorithms can be exploited and defeated. 
 

    4.2  Methodology 
 

At the beginning, there are no honeypot instances in our 

system. We use an NIDS at the border of the network to detect 

attacks. When an attack is detected, a program called Agent 

sends a message to the EVHS controller to notify it about this 

attack.  

 
Figure 3. System architecture. 
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Then, our system generates a new honeypot or uses an 

available honeypot based on the system state to handle the 

new attack. The attack traffic is redirected to the honeypot 

through the moving-target defense mechanism. At this point, 

we can investigate and monitor all the activities of the 

attackers and protect the real system. The architecture and 

procedures are detailed in the next subsections. 
 

    4.3  System Architecture 
 

The general system architecture is depicted in Figure3, and 

has four main components as follows: 
 

4.3.1  Controllers 

They work on the control plane of the network and can be 

categorized into three types, each with their own specific tasks 

as follows: 

• SDN Controller: This type of controller sends the 

requests to the SDN forwarding devices (gateway 

and switches) to set up the network topology and also 

performs the moving target defense mechanism. 

• NFV Orchestrator: Based on the requirements of other 

controllers, this controller manages the creation and 

op-eration of the NFV infrastructure (which is the 

honeypot in our scheme). 

• EVHS Controller: This is the main controller in our 

system, and is depicted in Figure 4. The Agent 

message han-dling module (AMHM) handles the 

messages from the Agent while the honeypot 

management module (HMM) interacts with other 

controllers to set up the topology, and generate or 

reuse the honeypots to handle attacks. The details of 

the algorithms are presented in Subsection IV-D. 

• Database: The three controllers share the same 

database that stores the network information 

regarding the topol-ogy and honeypots. 

 
Figure 4. Controller’s architecture. 

 

4.3.2  Routers and switches 

These are the forwarding devices that follow the command 

from the SDN controller to create the network topology and 

forward the network traffic. 

4.3.3  Victims and Honeypots 

They are controlled by the NFV orchestrator. Honeypots are 

generated or reused to handle attacks from attackers. 

4.3.4  NIDS & Agent 

The NDIS is located at the border of the network and the 

network traffic is mirrored to the NIDS from the router or 

switch through a span port. The NIDS is configured with rules 

to detect attacks from the network traffic and logs the alarms. 

The Agent observes the NIDS logs and retrieves the 

information on the attackers and victims (e.g, attacker’s IP, 

victim’s IP, attack type, etc.) from the alarms, and then sends 

this information to the EVHS controller. 
 

    4.4  Main Algorithms 
 

The main algorithms of our system are depicted in Figure 5 

and are divided into two main modules as follows: 

 
Figure 5. Main algorithms. 

 

4.4.1  Agent Message Handling Module - AMHM 

After receiving a message from the Agent, AMHM places the 

message in a message queue to process later. Owing to the 

possibility of several attacks occurring simultaneously, at 

 which time our system would take longer to get the 

honeypots ready, we use the message queue and process them 

one by one. The HMM triggers the AMHM to send a new 

message after processing the previous one. 
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4.4.2  Honeypot Management Module - HMM 

After receiving information regarding an attack, the HMM 

checks if the attacker is new by referring to the database. 

Table 1 presents the parameters of the attackers and 

honeypots. If the attacker is recognized, HMM notifies the 

honeypot currently handling this attacker, updates the 

database with the time at which this attacker appears again, 

and triggers the AMHM to obtain a new message. If the 

attacker is new, HMM checks if any honeypot is available for 

this attack type. If a honeypot is available, the attacker is 

connected to the available honeypot immediately by using the 

moving target defense mechanism, which also helps in 

reducing the operating cost by eliminating the need to create a 

new honeypot. If no honeypot is available, HMM checks if 

there are sufficient resources to generate a new honeypot. If 

sufficient resources are available, it generates a new honeypot 

based on the attack type, updates the information in the 

database, and then obtains a new message from AMHM 

again. In our research, we do not focus on the management of 

attack types, but instead focus on the effective management of 

the virtual honeypot. 

Table 1. Attackers’ Information In Database 

Parameters Descriptions 

AtkIP IP address of attacker 

AtkType Attack type 

VicIP IP address of victim 

Timestamp To calculate free time Tfree of honeypot 
 

Furthermore, the CPU and memory usage for each honeypot 

is related to the capacity of the honeypot system. Our system 

needs to monitor this information to ensure that it has 

sufficient resources to handle new attacks at any time. 

Therefore, we adopt another optimization algorithm 

periodically for HMM, as depicted in Figure 6. For instance, 

once an attacker is handled (i.e., the attack is complete), and 

there is no new attacker to connect to, a timestamp is updated 

in the database to indicate to the system that a particular 

honeypot is available. The time from when the honeypot is 

free until when the optimization algorithm starts is referred to 

as Tfree. We set two thresholds for this interval, which are 

described as follows: 

• If Tfree > Tfree-min, HMM sets the honeypot to be idle. 

At this time, the honeypot sleeps and waits for the 

NFV orchestrator to wake it up, which reduces the 

energy and operating cost of the system. 

• If Tfree > Tfree-max, HMM removes the honeypot from 

the network, which helps decrease the operating 

costs and enables more resources to be available for 

other system tasks. 

 
Figure 6. Honeypot management optimization algorithm. 

5. Implementation and Evaluation 
 

 
Figure 7. Implementation model. 

 

    5.1  Implementation 
 

To evaluate the performance and efficiency of our system, we 

set up the experiment topology as depicted in Figure 7. The 

system is implemented in the OpenStack environment (Stein 

version) to take advantage of the SDN and NFV features. We 

implement our prototype on a computer with 12 CPUs Intel 

i7-8700 3.4 GHz and 48 GB memory. The prototype consists 

of five nodes, which can be described as follows: 

• 01 Attacker node (01 CPU & 01 GB memory): This 

node runs a program to perform attacks from many 

fake IPs. 

• 02 Compute nodes (03 CPUs & 08 GB memory): 

These nodes store the victim and honeypots, which 

run as VMs. 

• 01 NIDS node (01 CPU & 01 GB memory): This node 

is installed at the border of the network, and connects 

to the router through a span port. All the network 

traffic is also forwarded to the NIDS by this port. We 

write a small program called Agent, which works on 

this node to observe the NIDS logs and send 

messages to the EVHS controller when attackers are 

detected. We use Snort as the NIDS with 

preconfigured rules to detect attacks [24], [25]. 

• 01 Controller node (04 CPUs & 30 GB memory): This 

node contains the EVHS controller and other 

entities. All programs need only more than 700 lines 

of C code and can be easily modified and integrated 

into other real systems. 
 

    5.2  Evaluation 
 

In this section, we evaluate the performance, efficiency, and 

applicability of our system through three experiments. The 

first experiment focuses on the response time that the system 

requires to handle attackers. In the second experiment, we 

evaluate the efficiency of the system by observing the number 

of honeypots and attackers based on time. In the last 

experiment, we evaluate the CPU and memory consumption 

of our programs (agent, EVHS controller) on the NIDS node 

and controller node, respectively. 

5.2.1  Response Time Evaluation 

The time from when the attacker starts attacking until when 

the attacker receives a response from the victim is referred to 
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as response time. We calculated the response time and 

compared it with the results of most related works (DVNH) 

[20], and the results are depicted in Figure 8. DVNH needs 19 

seconds to generate a new honeypot and connect it to the 

attacker, whereas our system needs only 13.551 seconds. 

Furthermore, because we use algorithms to reuse the available 

honeypots, the average response time of our system is only 

7.099 seconds. Based on these results, we can conclude that 

our system performs attack handling instantly. 

 
Figure 8. Response time of our system to attacks in 

comparison with DVNH [20] 

5.2.2  Efficiency Evaluation 

In this experiment, we set up conditions as presented in Table 

2. A new attacker is created randomly from 1 to 5 minutes, 

and one attacker is deleted randomly after 5 to 10 minutes. 

After 15 minutes without being attached to any new attacker, 

honeypots are set to be idle and are removed after 60 minutes 

if they continue to remain idle. After 6 hours, we obtain the 

result depicted in Figure 9. 

Table 2. Experiment Conditions 

Name Action Time (minute) 

Attacker 
Create 01 new after Random 1∼5 

Delete 01 after Random 5∼10 

Honeypot 
Go to idle if Tfree > 15 

Remove if Tfree > 60 
 

 

Figure 9. Efficiency on managing honeypots. 

The baseline (green line) is the normal honeypot system, 

which is set at 20. This implies that the normal honeypot 

system needs to create 20 honeypots before handling any new 

attackers. In our results, the number of honeypots (blue line) 

always follows the number of attackers (red line). With the 

optimization algorithm, our system can adapt to the change in 

the attack number and attack type, by reusing the available 

honeypot without creating a new one. When the attackers 

gradually disappear, the number of honeypots also steadily 

decreases. Particularly, in our experiments, there is no idling 

honeypot because all honeypots are reused efficiently. 

5.2.3  Resources Consumption Evaluation 

To evaluate the performance and applicability of our system, 

we continue to evaluate the CPU and memory utilization of 

our programs on the NIDS node and controller node. For all 

our programs (Agent and EVHS controllers), the CPU and 

memory consumption is only under 0.1% on the NIDS node 

(1 CPU and 1 GB memory) and controller node (4 CPUs and 

30 GB memory), respectively. These results indicate that our 

programs work well and cause a significant overhead to the 

operation of the system. 
 

6. Conclusion & Future Works 
 

In this research, we introduced an EVHS for an 

SDNFV-based network. Additionally, we addressed the 

complexity and issues of current honeypot systems. This 

proposal not only resolves these problems but also brings a 

new approach to manage and control the honeypot system 

efficiently. The system uses NIDS at the border of the 

network to detect attacks, and takes advantage of the SDN and 

NFV technologies to flexibly generate honeypots and connect 

attackers to them by using the moving target defense 

mechanism. Furthermore, we optimize the system to 

efficiently reuse the available honeypots after handling 

attacks. Through the experimental results, we can validate that 

our system is an elastic and efficient approach to manage and 

provide virtual honeypots in the SDNFV-based network and 

can resolve the problems of current honeypot systems. 

In the future, we intend to enhance our system by forcing 

multiple attackers of the same attack type to attack only one 

virtual honeypot to reduce the maximum resource 

consumption of virtual honeypots, and apply more malicious 

detection mechanisms to cover a wider range of attacks and 

improve detection accuracy. 
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