
295
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

EVHS - Elastic Virtual Honeypot System for

SDNFV-Based Networks

Nguyen Canh Thang1, Minho Park*2 and Yang-Ick Joo3

1Department of Information Communication Convergence Technology, Soongsil University, South Korea
*2Corresponding author: School of Electronic Engineering, Soongsil University, South Korea

3Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University, South Korea

Abstract: The SDNFV-based network has leveraged the

advantages of software-defined networking (SDN) and

network-function virtualization (NFV) to become the most

prominent network architecture. However, with the

advancement of the SDNFV-based network, more attack

types have emerged. This research focuses on one of the

methods (use of the honeypot system) of preventing these

attacks on the SDNFV-based network. We introduce an

SDNFV-based elastic virtual honeypot system (EVHS),

which not only resolves problems of other current honeypot

systems but also employs a new approach to efficiently

manage and control honeypots. It uses a

network-intrusion-detection system (NIDS) at the border of

the network to detect attacks, leverages the advantages of

SDN and NFV to flexibly generate honeypots, and connects

attackers to these honeypots by using a moving-target defense

mechanism. Furthermore, we optimize the system to

efficiently reuse the available honeypots after the attacks are

handled. Experimental results validate that the proposed

system is a flexible and efficient approach to manage and

provide virtual honeypots in the SDNFV-based network; the

system can also resolve the problems encountered by current

honeypot systems.

Keywords: Honeypot system, network intrusion detection

system, software-defined networking, network function

virtualization.

1. Introduction

In recent years, several changes have been made in com-puter

networking, and many opportunities have arisen for

researchers and industries, especially with the development of

software-defined networking (SDN) and network-function

virtualization (NFV). SDN represents a new architecture that

decouples the data plane and control plan to centralize

mon-itoring and control the network traffic [1-4]. In NFV,

network functions are separated from hardware to decrease

the cost and time involved in network-service deployment

[5][6]. The SDNFV-based network is created using a

combination of these two techniques; it offers more

advantages in terms of management and operation than those

offered by the traditional network [7].

Besides the growth of the network, the number of net-work

attacks also increases significantly. Security tools, such as the

network intrusion detection system (NIDS), network intrusion

prevention system (NIPS), firewall, and honeypot system,

should also be deployed to prevent these attacks. However,

many problems are encountered when deploying these tools

(especially the honeypot system). The honeypot system is a

proactive defense mechanism that is built to connect attackers

with fabricated hosts (honeypots) instead of real ones [8] –

[14]. Once attackers enter the honeypots, their behaviors are

monitored, and the administrators can detect any suspicious

actions.

Several issues that can affect the deployment of current

hon-eypot systems remain to be addressed. The main

drawbacks are listed subsequently:

• Costs: Current honeypot systems always need to

create several available honeypots, both physical and

virtual, to become proactive. These honeypots

should be ready at any time to handle any new

attackers, which implies that the systems should

create many honeypots beforehand. However, it is

difficult to scale the definite size of the honeypot

system; further, the capability of such a system to

realize large-scale deployment is limited owing to its

infrastructure and operating costs.

• Adaptability: Computer networking has gained

signifi-cant interest over the past few years; this has

led to many new types of services and network

attacks. Each honeypot should only handle one

attack type, and current honeypot systems cannot

quickly adapt to the changes in network topologies

and attack types.

Thus, the current honeypot systems have several

disadvan-tages, and it is difficult to deploy them in future

network archi-tectures such as the SDNFV-based networks.

This necessitates the development of a new honeypot system

that can address all these issues.

Herein, we propose a new elastic virtual honeypot system to

resolve the critical issues discussed earlier in the

SDNFV-based network. The proposed system leverages the

advantages of emerging technologies, SDN (controls the

network traffic) and NFV (manages the virtual infrastructure).

It enhances the current architecture by generating and

managing virtual honeypots; it monitors the incoming traffic

in the SDNFV-based network through an NIDS and then

decides to generate a new honeypot to handle the network

traffic from a suspi-cious address. If honeypots are available,

the proposed system automatically redirects the attack traffic

to them by applying a moving-target defense mechanism.

These algorithms help in handling the issues with the scale of

the honeypot system. We solve the problem associated with

many attack types by using the database and reusing the

honeypots. The information of the honeypot, attacker, and

attack type is stored in a database. Each honeypot can handle

one attack type from one attacker, and after that attacker gets

blocked or disappears, the proposed system reuses the

honeypot for the same attack type in the future. Using these

algorithms, the issues discussed earlier can be resolved, and

the efficiency and performance of the proposed system can be

improved.

296
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

The major contributions of this research are summarized

subsequently:

• The problems of the current honeypot systems (i.e.,

cost and adaptation) are described.

• A new elastic virtual honeypot system, based on SDN

and NFV technologies, which can detect network

attacks us-ing an NIDS, generate and manage

honeypots elastically, use the moving-target defense

mechanism to connect attackers to honeypots, and

reuse honeypots efficiently, is proposed. It can

improve resource management and resolve the

problems discussed earlier.

• Several experiments are conducted to evaluate the

perfor-mance and efficiency of the new system.

The remainder of this paper is organized as follows. Section 2

presents brief introductions to the honeypot system,

SDNFV-based network, and moving-target defense

mechanism. Section 3 discusses research related to this study.

The design of the proposed system is detailed in Section 4.

Section 5 focuses on the detailed implementation and

evaluation of the proposed system. Finally, the conclusion and

scope for future research are presented in Section 6.

2. Background Knowledge

 2.1 SDNFV-based Network

In the past few years, both academia and the industry have

continuously conducted research on SDN and NFV

technolo-gies owing to their potentials. SDN enables network

program-ming by decoupling the control plane and the data

plane. The data plane is a simple forwarding device that

receives forwarding rules from the controller in the control

plane. The first SDN protocol that allows a single controller to

control and manipulate the network infrastructure is

OpenFlow. The NFV is an architecture that decouples the

network service functions, such as routing, load balancing,

and firewalls, from the dedicated hardware. This implies that

the network functions are packaged in the form of virtual

machines (VMs) on commodity hardware and can easily

control and manage the adaptation as per the network

requirements. SDN and NFV improve the speed of

deployment of network functions and scalability; further, they

utilize network resources effectively. Furthermore, Wireless

Sensor Network (WSN) can also be considered as similar to

SDNFV-based network, where gate-ways or controllers

control all network operations and each end device performs

as the network function [15].

The SDNFV-based network architecture is detailed in Figure

1, which includes the SDN controller, NFV orchestrator

(NFV-O), NFV infrastructure, and forwarding devices [7].

The SDN controller determines the network traffic flows and

commu-nicates with the forwarding devices (SDN switches)

to apply policies from the control plane to the data plane. The

NFV infrastructure includes virtualized network functions

(VNFs), which run as VMs on hypervisors and physical

servers. The NFV-O is responsible for lifecycle management

including the instantiation, scaling, and termination of VNFs.

It is integrated with the SDN controller through northbound

interfaces or APIs. After checking the policy requirements

and generating the network configuration and topology, the

NFV-O produces optimal function assignments and assigns

the function to certain VMs in the optimized path; this is

known as service function chaining.

Figure 1. SDNFV-based network architecture.

 2.2 Honeypot System

The honeypot system employs a proactive defense

mech-anism that is built to connect attackers with fabricated

hosts (honeypots) instead of real ones [8] – [14]. Attackers

think that they are connecting with real victims, and they

begin their attacks. A honeypot can be classified as a

low-interaction honeypot (LIH), medium-interaction

honeypot (MIH), or high-interaction honeypot (HIH) on the

basis of its level of in-teraction [8] – [12]. The LIH only

simulates services that are frequently requested by attackers;

these include a remote desktop or a secure shell (SSH). The

MIH partially or fully implements services to emulate a

well-known vendor’s imple-mentation. The HIH is most

similar to a real system that runs various applications such as

web servers and databases. The HIH aims to capture the

maximum amount of information of the attackers’ techniques.

Before the proposal of the virtual honeypot system, there were

several honeypot projects, called honeynet (generations

I, II, and III) [13] – [14]. The deployment of these generations

of honeynet was always based on physical servers and

network devices, which implied that one physical server can

only support one honeypot. This architecture is neither

scalable nor flexible; further, it is too difficult to redeploy

after security experts collect all the adversary information.

Therefore, the virtual honeypot architecture resolves this

problem; it runs multiple virtual honeypots on one physical

host and reduces the other infrastructure costs.

A honeypot system can be integrated with an NIDS while it

works as the detection sensor. The honeypot system helps

security experts detect suspicious activities of network

packets that do not adhere to the rules of the NIDS. It can

support the NIDS in the detection and prevention of attacks

and increase the detection accuracy.

 2.3 Moving Target Defense Mechanism

This mechanism was exhibited in the SDN environment,

which is detailed in Figure 2. When it is detected that an

attacker is attempting to send exploit code to the victim host

(1 and 2), the controller commands the switch to redirect the

network traffic to the shadow victim (3). The shadow victim

then responds to the attacker’s request (4 and 5). The attacker

is deceived into communicating with the shadow victim

instead of the real one.

The moving-target defense mechanism allows security

ex-perts to create, analyze, evaluate, and deploy mechanisms

and strategies for the victim to continuously shift and change

properties over time for increasing the complexity and costs

for attackers. It also limits the vulnerability of the host to

297
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

attacks, and it increases the system resilience. The recently

proposed MTDM is feasible for reducing the percentage of

successful attacks by altering or diversifying the attributes or

parameters of a protected system. If MTDM is applied to a

security system, attackers will encounter more difficulties in

launching attacks, which is one of the game-changing themes

[16], [17].

Figure 2. Moving-target defense mechanism.

3. Related Works

 3.1 Honeypot System

Several solutions to address the problems of cost and

complexity of the virtual honeypot system have been

proposed. The hybrid honeypot system was proposed; it

includes multiple levels of honeypots, such as the LIH at the

front end and HIH at the back end [9], [10]. Once sufficient

information is collected from the LIH, the hybrid system

redirects the current traffic to the HIH. However, because

both honeypot types exist simultaneously in the hybrid

system, the resource consumption and complex operations are

more. W. Fan [11] proposed a honeypot architecture that can

dynamically reconfigure virtual honeypots; both Snort and

Honeybrid Gateway were used to make decisions for the

packets. The inbound traffic needs to travel through two filter

layers; then, the back end can be easily flooded by invalid

data. This architecture also requires the preinstallation of all

the virtual honeypot instances, which does not resolve the cost

problem. T. Lengyel [18] introduced a hybrid honeynet that is

based on the clone feature of the Xen virtualization platform;

a hybrid honeynet was used to perform routing between the

attacker and a combination of LIH and HIH. However, this

solution decreases the throughput because each packet is

duplicated, which implies that the network performance is

also affected.

 3.2 Honeypot System In SDNFV-based Network

Many proposals have been made to improve the honeypot

system using features and benefits of SDN and NFV. W. Han

[19] proposed HoneyMix, which is a hybrid honeypot system

running on the SDN-enabled network. When it receives

requests from an attacker, HoneyMix redirects these requests

to all the available honeypot instances and selects the most

appropriate honeypot to respond to the attacker. However, if

the number of attacks is larger than the number of honey-pots,

HoneyMix cannot continue handling new attackers. This

problem also exists in the proposal made by B. Park [20], but

this proposal only generates a new honeypot when a new

attack is detected. S. Kyung et al. [21] presented a newer

version of HoneyMix, which is called HoneyProxy. There is a

new proxy module that operates in three modes: transparent

mode (T-Mode), multicast mode (M-Mode), and relay mode

(R-Mode). Each packet, coming from the outside, needs to be

inspected and then forwarded to the network. Because

HoneyProxy works as a reverse proxy between honeypots and

attackers, this approach also introduces a bottleneck for the

SDN controller. W. Fan [22] proposed a method of

transparently redirecting traffic from the LIH to HIH. At the

3-way handshake phase, the SYN packet is stored at the front

end of the application. Hence, this system is highly

susceptible to an SYN flood attack. The packets also need to

go through the SDN application and Snort (IDS) to make a

decision that creates delays in packet processing.

4. System Design

In this section, we analyze and describe the objectives and

design (including the main components) of the proposed

system, respectively.

 4.1 Objectives

To address the vulnerabilities discussed in Section 2.2, the

proposed system needs to achieve the following objectives:

• Adaptability: it should be able to adapt to the changes

in network topology and attack types.

• Security: it must ensure that attackers do not reach real

hosts.

• High Performance: it needs to generate new

honeypots or connect attackers to available

honeypots immediately.

• Efficiency: it needs to manage honeypots effectively

to

• reduce the costs and handle a new attack at any time.

• Applicability: it should be easily applicable to the real

system.

To achieve these objectives, a few assumptions need to be

relied upon for designing the system. First, we eliminate the

possibility of any compromised components in the network.

Furthermore, the connections between network entities need

to be reliable. If attackers can access switches or controllers,

all the algorithms can be exploited and defeated.

 4.2 Methodology

At the beginning, there are no honeypot instances in our

system. We use an NIDS at the border of the network to detect

attacks. When an attack is detected, a program called Agent

sends a message to the EVHS controller to notify it about this

attack.

Figure 3. System architecture.

298
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

Then, our system generates a new honeypot or uses an

available honeypot based on the system state to handle the

new attack. The attack traffic is redirected to the honeypot

through the moving-target defense mechanism. At this point,

we can investigate and monitor all the activities of the

attackers and protect the real system. The architecture and

procedures are detailed in the next subsections.

 4.3 System Architecture

The general system architecture is depicted in Figure3, and

has four main components as follows:

4.3.1 Controllers

They work on the control plane of the network and can be

categorized into three types, each with their own specific tasks

as follows:

• SDN Controller: This type of controller sends the

requests to the SDN forwarding devices (gateway

and switches) to set up the network topology and also

performs the moving target defense mechanism.

• NFV Orchestrator: Based on the requirements of other

controllers, this controller manages the creation and

op-eration of the NFV infrastructure (which is the

honeypot in our scheme).

• EVHS Controller: This is the main controller in our

system, and is depicted in Figure 4. The Agent

message han-dling module (AMHM) handles the

messages from the Agent while the honeypot

management module (HMM) interacts with other

controllers to set up the topology, and generate or

reuse the honeypots to handle attacks. The details of

the algorithms are presented in Subsection IV-D.

• Database: The three controllers share the same

database that stores the network information

regarding the topol-ogy and honeypots.

Figure 4. Controller’s architecture.

4.3.2 Routers and switches

These are the forwarding devices that follow the command

from the SDN controller to create the network topology and

forward the network traffic.

4.3.3 Victims and Honeypots

They are controlled by the NFV orchestrator. Honeypots are

generated or reused to handle attacks from attackers.

4.3.4 NIDS & Agent

The NDIS is located at the border of the network and the

network traffic is mirrored to the NIDS from the router or

switch through a span port. The NIDS is configured with rules

to detect attacks from the network traffic and logs the alarms.

The Agent observes the NIDS logs and retrieves the

information on the attackers and victims (e.g, attacker’s IP,

victim’s IP, attack type, etc.) from the alarms, and then sends

this information to the EVHS controller.

 4.4 Main Algorithms

The main algorithms of our system are depicted in Figure 5

and are divided into two main modules as follows:

Figure 5. Main algorithms.

4.4.1 Agent Message Handling Module - AMHM

After receiving a message from the Agent, AMHM places the

message in a message queue to process later. Owing to the

possibility of several attacks occurring simultaneously, at

 which time our system would take longer to get the

honeypots ready, we use the message queue and process them

one by one. The HMM triggers the AMHM to send a new

message after processing the previous one.

299
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

4.4.2 Honeypot Management Module - HMM

After receiving information regarding an attack, the HMM

checks if the attacker is new by referring to the database.

Table 1 presents the parameters of the attackers and

honeypots. If the attacker is recognized, HMM notifies the

honeypot currently handling this attacker, updates the

database with the time at which this attacker appears again,

and triggers the AMHM to obtain a new message. If the

attacker is new, HMM checks if any honeypot is available for

this attack type. If a honeypot is available, the attacker is

connected to the available honeypot immediately by using the

moving target defense mechanism, which also helps in

reducing the operating cost by eliminating the need to create a

new honeypot. If no honeypot is available, HMM checks if

there are sufficient resources to generate a new honeypot. If

sufficient resources are available, it generates a new honeypot

based on the attack type, updates the information in the

database, and then obtains a new message from AMHM

again. In our research, we do not focus on the management of

attack types, but instead focus on the effective management of

the virtual honeypot.

Table 1. Attackers’ Information In Database

Parameters Descriptions

AtkIP IP address of attacker

AtkType Attack type

VicIP IP address of victim

Timestamp To calculate free time Tfree of honeypot

Furthermore, the CPU and memory usage for each honeypot

is related to the capacity of the honeypot system. Our system

needs to monitor this information to ensure that it has

sufficient resources to handle new attacks at any time.

Therefore, we adopt another optimization algorithm

periodically for HMM, as depicted in Figure 6. For instance,

once an attacker is handled (i.e., the attack is complete), and

there is no new attacker to connect to, a timestamp is updated

in the database to indicate to the system that a particular

honeypot is available. The time from when the honeypot is

free until when the optimization algorithm starts is referred to

as Tfree. We set two thresholds for this interval, which are

described as follows:

• If Tfree > Tfree-min, HMM sets the honeypot to be idle.

At this time, the honeypot sleeps and waits for the

NFV orchestrator to wake it up, which reduces the

energy and operating cost of the system.

• If Tfree > Tfree-max, HMM removes the honeypot from

the network, which helps decrease the operating

costs and enables more resources to be available for

other system tasks.

Figure 6. Honeypot management optimization algorithm.

5. Implementation and Evaluation

Figure 7. Implementation model.

 5.1 Implementation

To evaluate the performance and efficiency of our system, we

set up the experiment topology as depicted in Figure 7. The

system is implemented in the OpenStack environment (Stein

version) to take advantage of the SDN and NFV features. We

implement our prototype on a computer with 12 CPUs Intel

i7-8700 3.4 GHz and 48 GB memory. The prototype consists

of five nodes, which can be described as follows:

• 01 Attacker node (01 CPU & 01 GB memory): This

node runs a program to perform attacks from many

fake IPs.

• 02 Compute nodes (03 CPUs & 08 GB memory):

These nodes store the victim and honeypots, which

run as VMs.

• 01 NIDS node (01 CPU & 01 GB memory): This node

is installed at the border of the network, and connects

to the router through a span port. All the network

traffic is also forwarded to the NIDS by this port. We

write a small program called Agent, which works on

this node to observe the NIDS logs and send

messages to the EVHS controller when attackers are

detected. We use Snort as the NIDS with

preconfigured rules to detect attacks [24], [25].

• 01 Controller node (04 CPUs & 30 GB memory): This

node contains the EVHS controller and other

entities. All programs need only more than 700 lines

of C code and can be easily modified and integrated

into other real systems.

 5.2 Evaluation

In this section, we evaluate the performance, efficiency, and

applicability of our system through three experiments. The

first experiment focuses on the response time that the system

requires to handle attackers. In the second experiment, we

evaluate the efficiency of the system by observing the number

of honeypots and attackers based on time. In the last

experiment, we evaluate the CPU and memory consumption

of our programs (agent, EVHS controller) on the NIDS node

and controller node, respectively.

5.2.1 Response Time Evaluation

The time from when the attacker starts attacking until when

the attacker receives a response from the victim is referred to

300
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

as response time. We calculated the response time and

compared it with the results of most related works (DVNH)

[20], and the results are depicted in Figure 8. DVNH needs 19

seconds to generate a new honeypot and connect it to the

attacker, whereas our system needs only 13.551 seconds.

Furthermore, because we use algorithms to reuse the available

honeypots, the average response time of our system is only

7.099 seconds. Based on these results, we can conclude that

our system performs attack handling instantly.

Figure 8. Response time of our system to attacks in

comparison with DVNH [20]

5.2.2 Efficiency Evaluation

In this experiment, we set up conditions as presented in Table

2. A new attacker is created randomly from 1 to 5 minutes,

and one attacker is deleted randomly after 5 to 10 minutes.

After 15 minutes without being attached to any new attacker,

honeypots are set to be idle and are removed after 60 minutes

if they continue to remain idle. After 6 hours, we obtain the

result depicted in Figure 9.

Table 2. Experiment Conditions

Name Action Time (minute)

Attacker
Create 01 new after Random 1∼5

Delete 01 after Random 5∼10

Honeypot
Go to idle if Tfree > 15

Remove if Tfree > 60

Figure 9. Efficiency on managing honeypots.

The baseline (green line) is the normal honeypot system,

which is set at 20. This implies that the normal honeypot

system needs to create 20 honeypots before handling any new

attackers. In our results, the number of honeypots (blue line)

always follows the number of attackers (red line). With the

optimization algorithm, our system can adapt to the change in

the attack number and attack type, by reusing the available

honeypot without creating a new one. When the attackers

gradually disappear, the number of honeypots also steadily

decreases. Particularly, in our experiments, there is no idling

honeypot because all honeypots are reused efficiently.

5.2.3 Resources Consumption Evaluation

To evaluate the performance and applicability of our system,

we continue to evaluate the CPU and memory utilization of

our programs on the NIDS node and controller node. For all

our programs (Agent and EVHS controllers), the CPU and

memory consumption is only under 0.1% on the NIDS node

(1 CPU and 1 GB memory) and controller node (4 CPUs and

30 GB memory), respectively. These results indicate that our

programs work well and cause a significant overhead to the

operation of the system.

6. Conclusion & Future Works

In this research, we introduced an EVHS for an

SDNFV-based network. Additionally, we addressed the

complexity and issues of current honeypot systems. This

proposal not only resolves these problems but also brings a

new approach to manage and control the honeypot system

efficiently. The system uses NIDS at the border of the

network to detect attacks, and takes advantage of the SDN and

NFV technologies to flexibly generate honeypots and connect

attackers to them by using the moving target defense

mechanism. Furthermore, we optimize the system to

efficiently reuse the available honeypots after handling

attacks. Through the experimental results, we can validate that

our system is an elastic and efficient approach to manage and

provide virtual honeypots in the SDNFV-based network and

can resolve the problems of current honeypot systems.

In the future, we intend to enhance our system by forcing

multiple attackers of the same attack type to attack only one

virtual honeypot to reduce the maximum resource

consumption of virtual honeypots, and apply more malicious

detection mechanisms to cover a wider range of attacks and

improve detection accuracy.

7. Acknowledgement

This work was supported by the Institute of Information &

Communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) (No

2018-0-00254, SDN security technology development).

Reference

[1] S. Sezer et al., “Are We Ready for SDN? Implementation

Challenges for Software-Defined Networks,” in IEEE

Communications Magazine, vol. 51, no. 7, pp. 36-43,

July 2013.

[2] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka,

and T. Turletti, “A Survey of Software-Defined

Networking: Past, Present, and Future of Programmable

Networks,” in IEEE Communications Surveys &

Tutorials, vol. 16, no. 3, pp. 1617-1634, Third Quarter

2014.

[3] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A

Survey on Software-Defined Networking,” in IEEE

Communications Surveys & Tutorials, vol. 17, no. 1, pp.

27-51, First quarter 2015.

[4] D. Kreutz, F. M. V. Ramos, P. E. Ver´ıssimo, C. E.

Rothenberg, S. Azodolmolky, and S. Uhlig,

301
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 12, No. 3, December 2020

“Software-Defined Networking: A Com-prehensive

Survey,” in Proceedings of the IEEE, vol. 103, no. 1, pp.

14-76, Jan. 2015.

[5] F. Reynaud, F. Aguessy, O. Bettan, M. Bouet, and V.

Conan, “Attacks Against Network Functions

Virtualization and Software-Defined Networking:

State-of-the-Art,” 2016 IEEE NetSoft Conference and

Work-shops (NetSoft), Seoul, 2016, pp. 471-476.

[6] M. Pattaranantakul, R. He, Q. Song, Z. Zhang, and A.

Meddahi, “NFV Security Survey: From Use Case

Driven Threat Analysis to State-of-the-Art

Countermeasures,” in IEEE Communications Surveys &

Tutorials, vol. 20, no. 4, pp. 3330-3368, Fourth quarter

2018.

[7] Y. Li and M. Chen, “Software-Defined Network

Function Virtualization: A Survey,” in IEEE Access,

vol. 3, pp. 2542-2553, 2015.

[8] M. Shukla, P. Verma, “Honeypot: Concepts, Types and

Working,” International Journal of Engineering

Development and Research (IJEDR), ISSN:2321-9939,

vol. 3, no. 4, pp. 596-598, December 2015.

[9] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N.

Provos, “A Hybrid Honeypot Architecture for Scalable

Network Monitoring,” Technical Report

CSE-TR-499-04, University of Michigan, 2004.

[10] H. Artail, H. Safa, M. Sraj, I. Kuwatly, and Z. Al-Masri,

“A Hybrid Honeypot Framework for Improving

Intrusion Detection Systems in Protecting

Organizational Networks,” Comput. Secur., vol. 25, no.

4, pp. 274288, Jun. 2006.

[11] W. Fan, D. Fernandez, and Z. Du, “Adaptive and Flexible

Virtual Honeynet,” in Proc. Int. Conf. Mobile, Secure,

Program. Netw., Paris, France, vol. 9395, pp. 1-17, Jun.

2015.

[12] L. Spitzner, “The Honeynet Project: Trapping the

Hackers,” IEEE Security Privacy, vol. 1, no. 2, pp.

15-23, Mar. 2003.

[13] L. K. Yan, “Virtual Honeynets Revisited,” in Proc. 6th

Annu. IEEE SMC Inf. Assurance Workshop (IAW), pp.

232-239, Jun. 2005.

[14] F. Abbasi and R. Harris, “Experiences with a Generation

III Virtual Honeynet,” in Proc. Australas. Telecommun.

Netw. Appl. Conf. (ATNAC), pp. 1-6, Nov. 2009.

[15] S. Godala and R.P.V. Vaddella, “A study on intrusion

detection system in wireless sensor networks”,

International Journal of Communication Networks and

Information Security 2020, vol. 12, pp. 127–141.

[16] C. Lei, H. Zhang, J. Tan, Y. Zhang, and X. Liu, “Moving

Target Defense Techniques: A Survey,” Security and

Communication Networks, vol. 2018, pp. 1-25, Jul.

2018.

[17] L. Wang and D. Wu, “Moving Target Defense Against

Network Reconnaissance with Software Defined

Networking,” In Bishop M., Nascimento A. (eds)

Information Security. ISC 2016. Lecture Notes in

Computer Science, vol 9866. Springer, Cham, 2016.

[18] T. Lengyel, J. Neumann, S. Maresca, and A. Kiayias,

“Towards Hybrid Honeynets via Virtual Machine

Introspection and Cloning,” in Network and System

Security (Lecture Notes in Computer Science), vol.

7873, J. Lopez, X. Huang, and R. Sandhu, Eds. Berlin,

Germany: Springer, pp. 164-177, 2013.

[19] W. Han, Z. Zhao, A. Doupe, and G.-J. Ahn, “HoneyMix:

Toward SDN-Based Intelligent Honeynet,” in Proc.

ACM Int. Workshop Secur. Softw. Defined Netw. Netw.

Function Virtualization, New York, NY, USA, pp. 1-6,

2016.

[20] B. Park, S. P. Dang, S. Noh, J. Yi, and M. Park,

”Dynamic Virtual Network Honeypot,” 2019

International Conference on Information and

Communication Technology Convergence (ICTC), Jeju

Island, Korea (South), pp. 375-377, 2019.

[21] S. Kyung et al., “HoneyProxy: Design and

Implementation of Next-Generation Honeynet via

SDN,” in Proc. IEEE Conf. Commun. Netw. Secur.

(CNS), pp. 1-9, Oct. 2017.

[22] W. Fan and D. Fernandez, “A Novel SDN-Based Stealthy

TCP Connection Handover Mechanism for Hybrid

Honeypot Systems,” 2017 IEEE Conference on Network

Softwarization (NetSoft), Bologna, pp. 1-9, 2017.

[23] https://www.openstack.org

[24] https://https://www.snort.org

[25] A. Gupta and L. Sharma, “Mitigation of DoS and Port

Scan Attacks Using Snort,” International Journal of

Computer Sciences and Engineering, vol. 7, pp.

248-258, 2010.

https://www.openstack.org/
https://https/www.snort.org

