1,305,917 research outputs found
Plasma contactor performance characterization
The plasma contactor performance is outlined. Some performance objectives are given including expellant compatibility, high electron production capability, high ion production capability, high reliability for starting and operation, passive emission control, switchover capability between ion/electron emission, low ion and electron energies, low system mass, and low expellant consumption rate. The basic elements of the hollow cathode are shown along with key features of the plasma source
Investigation of a high speed data handling system for use with multispectral aircraft scanners
A buffer memory data handling technique for use with multispectral aircraft scanners is presented which allows digital data generated at high data rates to be recorded on magnetic tape. A digital memory is used to temporarily store the data for subsequent recording at slower rates during the passive time of the scan line, thereby increasing the maximum data rate recording capability over real-time recording. Three possible implementations are described and the maximum data rate capability is defined in terms of the speed capability of the key hardware components. The maximum data rates can be used to define the maximum ground resolution achievable by a multispectral aircraft scanner using conventional data handling techniques
Precision Muon Tracking at Future Hadron Colliders with sMDT Chambers
Small-diameter muon drift tube (sMDT) chambers are a cost-effective
technology for high-precision muon tracking. The rate capability of the sMDT
chambers has been extensively tested at the Gamma Irradiation Facility at CERN
in view of expected rates at future high-energy hadron colliders. Results show
that it fulfills the requirements over most of the acceptance of muon
detectors. The optimization of the read-out electronics to further increase the
rate capability of the detectors is discussed. Chambers of this type are under
construction for upgrades of the muon spectrometer of the ATLAS detector at
high LHC luminosities. Design and construction procedures have been optimized
for mass production while providing a precision of better than 10 micrometers
in the sense wire positions and the mechanical stability required to cover
large areas.Comment: 5 pages, 12 figures; conference proceedings for IEEE NSS & MIC
conference, San Diego, 201
Ge Nanowires Anode sheathed with Amorphous Carbon for Rechargeable Lithium batteries
Interdisciplinary School of Green EnergyThe composite electrode composed of single crystalline Ge NWs sheathed with amorphous carbon showed excellent electrochemical properties of large reversible capacity, high coulombic efficiency, excellent rate capability and stable cycle performance. c-Ge NWs synthesized by using thermal decomposition of C2H2 gas at 700 °C under Ar atmosphere after SLS (solution-liquid-solid) growth were found to have good performance during cycling with Li. The rate capability for charging was shown reversible capacity of 963 mAh/g with a coulombic efficiency of 90% and 700 mAh/g at the rate of 6C (= 4800mA/g). Capacity retention after 100 cycles was 72% at the rate of 0.5C. The improved electrochemical performance of c-Ge-NWs fabricated in our experiment was attributed to the formation of amorphous Ge NWs during cycling and a homogenous carbon coating on Ge NWs. Thus, these results suggest that the use of nanowires structure can be promising for alloy anode materials in lithium ion batteries
Recommended from our members
P2-type Na2/3Ni1/3Mn2/3O2 Cathode Material with Excellent Rate and Cycling Performance for Sodium-Ion Batteries
P2-type Na2/3Ni1/3Mn2/3O2 is an air-stable cathode material for sodium-ion batteries. However, it suffers irreversible P2-O2 phase transition in 4.2-V plateau and shows poor cycling stability and rate capability within this plateau. To evaluate the practicability of this material in 2.3–4.1 V voltage range, single-crystal micro-sized P2-type Na2/3Ni1/3Mn2/3O2 with high rate capability and cycling stability is synthesized via polyvinylpyrrolidone (PVP)-combustion method. The electrochemical performance is evaluated by galvanostatic charge-discharge tests. The kinetics of Na+ intercalation/deintercalation is studied detailly with potential intermittent titration technique (PITT), galvanostatic intermittent titration technique (GITT) and cyclic voltammetry (CV). The discharge capacity at 0.1 C in 2.3–4.1 V is 87.6 mAh g−1. It can deliver 91.5% capacity at 40 C rate and keep 89% after 650 cycles at 5C. The calculated theoretical energy density of full cell with hard carbon anode is 210 Wh kg−1. The moderate energy density associated with high power density and long cycle life is acceptable for load adjustment of new-energy power, showing the prospect of practical application
Time-resolved fast-neutron imaging with a pulse-counting image intensifier
A new imaging method that combines high-efficiency fast-neutron detection with sub-ns time resolution is presented. This is achieved by exploiting the high neutron detection efficiency of a thick scintillator and the fast timing capability and flexibility of light-pulse detection with a dedicated image intensifier. The neutron converter is a plastic scintillator slab or, alternatively, a scintillating fibre screen. The scintillator is optically coupled to a pulse counting image intensifier which measures the 2-dimensional position coordinates and the Time-Of-Flight (TOF) of each detected neutron with an intrinsic time resolution of less than 1 ns. Large-area imaging devices with high count rate capability can be obtained by lateral segmentation of the optical readout channels
Rewriteable optical disk recorder development
A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented
- …
