1,223 research outputs found

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes

    Poboljšana adaptivna pretvorba ostataka prilikom H.264/AVC video kodiranja bez gubitka kvalitete

    Get PDF
    The H.264/AVC was designed mainly for lossy video coding, the lossless coding of H.264 use bypass mode for DCT and quantization. Although sample-by-sample DPCM improves performance of coding, the benefit is limited in intra. In this paper, a new adaptive transform is proposed based on the character of 4x block residual coefficient\u27s distribution, which can be used both in intra and inter coding. The greatest strength of the proposed transform is the decorrelation without inflation versus dynamic range of input matrix. Due to the random distribution of residual coefficients, a specific transform is hard to play a positive impact on them. Therefore, several transforms of different directions will be implemented simultaneously, and the most efficient one will be determined by a proposed mechanism. Then, by means of statistic method, a new scan order is designed for CAVLC entropy encoder, cooperating with corresponding transform. The simulation results show that based on the fast algorithm of proposed method, the bit saving achieves about 7.41% bit saving in intra coding and 10.47% in inter, compared with H.264-LS.H.264/AVC je napravljen prvenstveno za kodiranje videa uz gubitak kvalitete, dok kodiranje H.264 bez gubitka kvalitete koristi zaobilazni mod za DCT i kvantizaciju. Iako uzorak-po-uzorak (DPCM) kvantizacija poboljšava performanse kodiranja, dobitak je ograničen. U ovom radu predlaže se nova adaptivna transformacija koja se zasniva na znakovima od 4x4 blokova distribucije ostataka koeficijenata, koja može koristiti i unutarnje i među kodiranje. Najveća snaga predložene transformacije je u nekoreliranosti bez inflacije protiv dinamičke veličine ulazne matrice. Radi slučajne distribucije ostataka koeficijenata, teško je postići da određena transformacija ima pozitivan učinak na njih. Iz tog razloga istovremeno je implementirano nekoliko transformacija različitih pristupa, te je korištenjem predloženog mehanizma odabrana najefikasnija. Zatim je, korištenjem statističke metode, dizajniran novi poredak snimanja za CAVLC entropijski enkoder, koji surađuje s odgovarajućom transformacijom. Rezultati simulacija pokazuju da korištenjem brzog algoritma predložene metode dolazi do smanjenja korištenih bitova od 7.41% kod među kodiranja i 10.47% prilikom unutarnjeg kodiranja u usporedbi s H.264-LS

    Perceptually-Driven Video Coding with the Daala Video Codec

    Full text link
    The Daala project is a royalty-free video codec that attempts to compete with the best patent-encumbered codecs. Part of our strategy is to replace core tools of traditional video codecs with alternative approaches, many of them designed to take perceptual aspects into account, rather than optimizing for simple metrics like PSNR. This paper documents some of our experiences with these tools, which ones worked and which did not. We evaluate which tools are easy to integrate into a more traditional codec design, and show results in the context of the codec being developed by the Alliance for Open Media.Comment: 19 pages, Proceedings of SPIE Workshop on Applications of Digital Image Processing (ADIP), 201

    Depth-based Multi-View 3D Video Coding

    Get PDF

    An efficient error resilience scheme based on wyner-ziv coding for region-of-Interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications
    corecore