158 research outputs found

    On the dimension of H-strata in quantum matrices

    Full text link
    We study the topology of the prime spectrum of an algebra supporting a rational torus action. More precisely, we study inclusions between prime ideals that are torus-invariant using the HH-stratification theory of Goodearl and Letzter on one hand and the theory of deleting derivations of Cauchon on the other. We apply the results obtained to the algebra of m×nm \times n generic quantum matrices to show that the dimensions of the HH-strata described by Goodearl and Letzter are bounded above by the minimum of mm and nn, and that moreover all the values between 0 and this bound are achieved.Comment: New introduction; results improve
    • …
    corecore