7,137 research outputs found

    Data granulation by the principles of uncertainty

    Full text link
    Researches in granular modeling produced a variety of mathematical models, such as intervals, (higher-order) fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-called information granules. Modeling of the input data uncertainty is recognized as a crucial aspect in information granulation. Moreover, the uncertainty is a well-studied concept in many mathematical settings, such as those of probability theory, fuzzy set theory, and possibility theory. This fact suggests that an appropriate quantification of the uncertainty expressed by the information granule model could be used to define an invariant property, to be exploited in practical situations of information granulation. In this perspective, a procedure of information granulation is effective if the uncertainty conveyed by the synthesized information granule is in a monotonically increasing relation with the uncertainty of the input data. In this paper, we present a data granulation framework that elaborates over the principles of uncertainty introduced by Klir. Being the uncertainty a mesoscopic descriptor of systems and data, it is possible to apply such principles regardless of the input data type and the specific mathematical setting adopted for the information granules. The proposed framework is conceived (i) to offer a guideline for the synthesis of information granules and (ii) to build a groundwork to compare and quantitatively judge over different data granulation procedures. To provide a suitable case study, we introduce a new data granulation technique based on the minimum sum of distances, which is designed to generate type-2 fuzzy sets. We analyze the procedure by performing different experiments on two distinct data types: feature vectors and labeled graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated type-2 fuzzy set models.Comment: 16 pages, 9 figures, 52 reference

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Open source R for applying machine learning to RPAS remote sensing images

    Get PDF
    The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted Aircraft System (RPAS), is leading to a growing demand for new image processing and classification tools. This article presents a comparison of the Random Forest (RF) and Support Vector Machine (SVM) machine-learning algorithms for extracting land-use classes in RPAS-derived orthomosaic using open source R packages. The camera used in this work captures the reflectance of the Red, Blue, Green and Near Infrared channels of a target. The full dataset is therefore a 4-channel raster image. The classification performance of the two methods is tested at varying sizes of training sets. The SVM and RF are evaluated using Kappa index, classification accuracy and classification error as accuracy metrics. The training sets are randomly obtained as subset of 2 to 20% of the total number of raster cells, with stratified sampling according to the land-use classes. Ten runs are done for each training set to calculate the variance in results. The control dataset consists of an independent classification obtained by photointerpretation. The validation is carried out(i) using the K-Fold cross validation, (ii) using the pixels from the validation test set, and (iii) using the pixels from the full test set. Validation with K-fold and with the validation dataset show SVM give better results, but RF prove to be more performing when training size is larger. Classification error and classification accuracy follow the trend of Kappa index

    Benchmarking the Operation of Quantum Heuristics and Ising Machines: Scoring Parameter Setting Strategies on Optimization Applications

    Full text link
    We discuss guidelines for evaluating the performance of parameterized stochastic solvers for optimization problems, with particular attention to systems that employ novel hardware, such as digital quantum processors running variational algorithms, analog processors performing quantum annealing, or coherent Ising Machines. We illustrate through an example a benchmarking procedure grounded in the statistical analysis of the expectation of a given performance metric measured in a test environment. In particular, we discuss the necessity and cost of setting parameters that affect the algorithm's performance. The optimal value of these parameters could vary significantly between instances of the same target problem. We present an open-source software package that facilitates the design, evaluation, and visualization of practical parameter tuning strategies for complex use of the heterogeneous components of the solver. We examine in detail an example using parallel tempering and a simulator of a photonic Coherent Ising Machine computing and display the scoring of an illustrative baseline family of parameter-setting strategies that feature an exploration-exploitation trade-off.Comment: 13 pages, 6 figure
    • …
    corecore