3 research outputs found

    Guided Filtering based Pyramidal Stereo Matching for Unrectified Images

    Get PDF
    Stereo matching deals with recovering quantitative depth information from a set of input images, based on the visual disparity between corresponding points. Generally most of the algorithms assume that the processed images are rectified. As robotics becomes popular, conducting stereo matching in the context of cloth manipulation, such as obtaining the disparity map of the garments from the two cameras of the cloth folding robot, is useful and challenging. This is resulted from the fact of the high efficiency, accuracy and low memory requirement under the usage of high resolution images in order to capture the details (e.g. cloth wrinkles) for the given application (e.g. cloth folding). Meanwhile, the images can be unrectified. Therefore, we propose to adapt guided filtering algorithm into the pyramidical stereo matching framework that works directly for unrectified images. To evaluate the proposed unrectified stereo matching in terms of accuracy, we present three datasets that are suited to especially the characteristics of the task of cloth manipulations. By com- paring the proposed algorithm with two baseline algorithms on those three datasets, we demonstrate that our proposed approach is accurate, efficient and requires low memory. This also shows that rather than relying on image rectification, directly applying stereo matching through the unrectified images can be also quite effective and meanwhile efficien

    Efficient and accurate stereo matching for cloth manipulation

    Get PDF
    Due to the recent development of robotic techniques, researching robots that can assist in everyday household tasks, especially robotic cloth manipulation has become popular in recent years. Stereo matching forms a crucial part of the robotic vision and aims to derive depth information from image pairs captured by the stereo cameras. Although stereo robotic vision is widely adopted for cloth manipulation robots in the research community, this remains a challenging research task. Robotic vision requires very accurate depth output in a relatively short timespan in order to successfully perform cloth manipulation in real-time. In this thesis, we mainly aim to develop a robotic stereo matching based vision system that is both efficient and effective for the task of robotic cloth manipulation. Effectiveness refers to the accuracy of the depth map generated from the stereo matching algorithms for the robot to grasp the required details to achieve the given task on cloth materials while efficiency emphasizes the required time for the stereo matching to process the images. With respect to efficiency, firstly, by exploring a variety of different hardware architectures such as multi-core CPU and graphic processors (GPU) to accelerate stereo matching, we demonstrate that the parallelised stereo-matching algorithm can be significantly accelerated, achieving 12X and 176X speed-ups respectively for multi-core CPU and GPU, compared with SISD (Single Instruction, Single Data) single-thread CPU. In terms of effectiveness, due to the fact that there are no cloth based testbeds with depth map ground-truths for evaluating the accuracy of stereo matching performance in this context, we created five different testbeds to facilitate evaluation of stereo matching in the context of cloth manipulation. In addition, we adapted a guided filtering algorithm into a pyramidical stereo matching framework that works directly for unrectified images, and evaluate its accuracy utilizing the created cloth testbeds. We demonstrate that our proposed approach is not only efficient, but also accurate and suits well to the characteristics of the task of cloth manipulations. This also shows that rather than relying on image rectification, directly applying stereo matching to unrectified images is effective and efficient. Finally, we further explore whether we can improve efficiency while maintaining reasonable accuracy for robotic cloth manipulations (i.e.~trading off accuracy for efficiency). We use a foveated matching algorithm, inspired by biological vision systems, and found that it is effective in trading off accuracy for efficiency, achieving almost the same level of accuracy for both cloth grasping and flattening tasks with two to three fold acceleration. We also demonstrate that with the robot we can use machine learning techniques to predict the optimal foveation level in order to accomplish the robotic cloth manipulation tasks successfully and much more efficiently. To summarize, in this thesis, we extensively study stereo matching, contributing to the long-term goal of developing effective ways for efficient whilst accurate robotic stereo matching for cloth manipulation

    Maritime expressions:a corpus based exploration of maritime metaphors

    Get PDF
    This study uses a purpose-built corpus to explore the linguistic legacy of Britain’s maritime history found in the form of hundreds of specialised ‘Maritime Expressions’ (MEs), such as TAKEN ABACK, ANCHOR and ALOOF, that permeate modern English. Selecting just those expressions commencing with ’A’, it analyses 61 MEs in detail and describes the processes by which these technical expressions, from a highly specialised occupational discourse community, have made their way into modern English. The Maritime Text Corpus (MTC) comprises 8.8 million words, encompassing a range of text types and registers, selected to provide a cross-section of ‘maritime’ writing. It is analysed using WordSmith analytical software (Scott, 2010), with the 100 million-word British National Corpus (BNC) as a reference corpus. Using the MTC, a list of keywords of specific salience within the maritime discourse has been compiled and, using frequency data, concordances and collocations, these MEs are described in detail and their use and form in the MTC and the BNC is compared. The study examines the transformation from ME to figurative use in the general discourse, in terms of form and metaphoricity. MEs are classified according to their metaphorical strength and their transference from maritime usage into new registers and domains such as those of business, politics, sports and reportage etc. A revised model of metaphoricity is developed and a new category of figurative expression, the ‘resonator’, is proposed. Additionally, developing the work of Lakov and Johnson, Kovesces and others on Conceptual Metaphor Theory (CMT), a number of Maritime Conceptual Metaphors are identified and their cultural significance is discussed
    corecore