643 research outputs found

    Highlighting Current Trends in Volunteered Geographic Information

    Get PDF
    Volunteered Geographic Information (VGI) is a growing area of research. This Special Issue aims to capture the main trends in VGI research based on 16 original papers, and distinguishes between two main areas, i.e., those that deal with the characteristics of VGI and those focused on applications of VGI. The topic of quality assessment and assurance dominates the papers on VGI characteristics, whereas application-oriented work covers three main domains: human behavioral analysis, natural disasters, and land cover/land use mapping. In this Special Issue, therefore, both the challenges and the potentials of VGI are addressed

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    Open source data mining infrastructure for exploring and analysing OpenStreetMap

    Get PDF
    OpenStreetMap and other Volunteered Geographic Information datasets have been explored in the last years, with the aim of understanding how their meaning is rendered, of assessing their quality, and of understanding the community-driven process that creates and maintains the data. Research mostly focuses either on the data themselves while ignoring the social processes behind, or solely discusses the community-driven process without making sense of the data at a larger scale. A holistic understanding that takes these and other aspects into account is, however, seldom gained. This article describes a server infrastructure to collect and process data about different aspects of OpenStreetMap. The resulting data are offered publicly in a common container format, which fosters the simultaneous examination of different aspects with the aim of gaining a more holistic view and facilitates the results’ reproducibility. As an example of such uses, we discuss the project OSMvis. This project offers a number of visualizations, which use the datasets produced by the server infrastructure to explore and visually analyse different aspects of OpenStreetMap. While the server infrastructure can serve as a blueprint for similar endeavours, the created datasets are of interest themselves too

    Assessing the accuracy of openstreetmap data in south africa for the purpose of integrating it with authoritative data

    Get PDF
    Includes bibliographical references.The introduction and success of Volunteered Geographic Information (VGI) has gained the interest of National Mapping Agencies (NMAs) worldwide. VGI is geographic information that is freely generated by non-experts and shared using VGI initiatives available on the Internet. The NMA of South Africa i.e. the Chief Directorate: National Geo- Spatial Information (CD: NGI) is looking to this volunteer information to maintain their topographical database; however, the main concern is the quality of the data. The purpose of this work is to assess whether it is feasible to use VGI to update the CD: NGI topographical database. The data from OpenStreetMap (OSM), which is one the most successful VGI initiatives, was compared to a reference data set provided by the CD: NGI. Corresponding features between the two data sets were compared in order to assess the various quality aspects. The investigation was split into quantitative and qualitative assessments. The aim of the quantitative assessments was to determine the internal quality of the OSM data. The internal quality elements included the positional accuracy, geometric accuracy, semantic accuracy and the completeness. The _rst part of the qualitative assessment was concerned with the currency of OSM data between 2006 and 2012. The second part of the assessment was focused on the uniformity of OSM data acquisition across South Africa. The quantitative results showed that both road and building features do not meet the CD: NGI positional accuracy standards. In some areas the positional accuracy of roads are close to the required accuracy. The buildings generally compare well in shape to the CD: NGI buildings. However, there were very few OSM polygon features to assess, thus the results are limited to a small sample. The semantic accuracy of roads was low. Volunteers do not generally classify roads correctly. Instead, many volunteers prefer to class roads generically. The last part of the quantitative results, the completeness, revealed that commercial areas reach high completeness percentages and sometimes exceed the total length of the CD: NGI roads. In residential areas, the percentages are lower and in low urban density areas, the lowest. Nonetheless, the OSM repository has seen signi_cant growth since 2006. The qualitative results showed that because the OSM repository has continued to grow since 2006, the level of currency has increased. In South Africa, the most contributions were made between 2010 and 2012. The OSM data set is thus current after 2012. The amount and type of contributions are however not uniform across the country for various reasons. The number of point contributions was low. Thus, the relationship between the type of contribution and the settlement type could not be made with certainty. Because the OSM data does not meet the CD: NGI spatial accuracy requirements, the two data sets cannot be integrated at the database level. Instead, two options are proposed. The CD: NGI could use the OSM data for detecting changes to the landscape only. The other recommendation is to transform and verify the OSM data. Only those features with a high positional accuracy would then be ingested. The CD: NGI currently has a shortage of sta_ that is quali_ed to process ancillary data. Both of the options proposed thus require automated techniques because it is time consuming to perform these tasks manually

    Proceedings of the Academic Track at State of the Map 2019 - Heidelberg (Germany), September 21-23, 2019

    Get PDF
    State of the Map featured a full day of academic talks. Building upon the motto of SotM 2019 in "Bridging the Map" the Academic Track session was aimed to provide the bridge to join together the experience, understanding, ideas, concepts and skills from different groups of researchers, academics and scientists from around the world. In particular, the Academic Track session was meant to build this bridge that connects members of the OpenStreetMap community and the academic community by providing an open passage for exchange of ideas, communication and opportunities for increased collaboration. These proceedings include 14 abstracts accepted as oral presentations and 6 abstracts presented as posters. Contributions were received from different academic fields, for example geography, remote sensing, computer and information sciences, geomatics, GIScience, the humanities and social sciences, and even from industry actors. We are particularly delighted to have included abstracts from both experienced researchers and students. Overall, it is our hope that these proceedings accurately showcase the ongoing innovation and maturity of scientific investigations and research into OpenStreetMap, showing how it as a research object converges multiple research areas together. Our aim is to show how the sum total of investigations of issues like Volunteered Geographic Information, geo-information, and geo-digital processes and representation shed light on the relations between crowds, real-world applications, technological developments, and scientific research

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    "This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research.

    Understanding MapSwipe: Analysing Data Quality of Crowdsourced Classifications on Human Settlements

    Get PDF
    Geodata is missing to populate maps for usage of local communities. Efforts for filling gaps (automatically) by deriving data on human settlements using aerial or satellite imagery is of current concern (Esch et al., 2013; Pesaresi et al., 2013; Voigt et al., 2007). Among semi-automated methods and pre-processed data products, crowdsourcing is another tool which can help to collect information on human settlements and complement existing data, yet it’s accuracy is debated (Goodchild and Li, 2012; Haklay, 2010; Senaratne et al., 2016). Here the quality of data produced by volunteers using the MapSwipe app was investigated. Three different intrinsic parameters of crowdsourced data and their impact on data quality were examined: agreement, user characteristics and spatial characteristics. Additionally, a novel mechanism based on machine learning techniques was presented to aggregate data provided from multiple users. The results have shown that a random forest based aggregation of crowdsourced classifications from MapSwipe can produce high quality data in comparison to state-of-the-art products derived from satellite imagery. High agreement serves as an indicator for correct classifications. Intrinsic user characteristics can be utilized to identify consistently incorrect classifications. Classifications that are spatial outliers show a higher error rate. The findings pronounce that the integration of machine learning techniques into existing crowdsourcing workflows can become a key point for the future development of crowdsourcing applications
    • …
    corecore