3 research outputs found

    ํŽ™์ธํ™€ ์ž‘์—…์„ ์œ„ํ•œ ๋‹ค์ž์œ ๋„ ๊ทธ๋ฆฌํผ ๋ฐ ๊ฐ๋„ ์—๋Ÿฌ ์ธก์ • ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2017. 8. ๊น€์ข…์›.ํŽ™์ธํ™€(Peg-In-Hole) ์ž‘์—…์€ ๋กœ๋ด‡์„ ํ™œ์šฉํ•œ ์กฐ๋ฆฝ์ž‘์—… ์ค‘ ๊ฐ€์žฅ ๊ธฐ์ดˆ์ ์ธ ์ž‘์—…์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์กฐ๊ทธ๋งˆํ•œ ์œ„์น˜ ์—๋Ÿฌ์—๋„ ๋ผ์ž„ ํ˜„์ƒ(Jamming ๋˜๋Š” Wedging)์ด ๋ฐœ์ƒํ•˜๊ณ  ์ด๋Š” ๋ถ€ํ’ˆ ์‚ฝ์ž… ์ค‘์— ํŒŒ์†์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์กฐ๋ฆฝ ๋Œ€์ƒ๋ฌผ๊ฐ„์˜ ์œ„์น˜ ๋ฐ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ์ •๋ ฌ์ด ์„ฑ๊ณต์ ์ธ ํŽ™์ธํ™€ ์ž‘์—…์„ ์œ„ํ•ด์„œ๋Š” ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ํŽ™์ธํ™€ ์ž‘์—…์„ ์œ„ํ•ด์„œ๋Š” ์ง€๊ธˆ๊นŒ์ง€ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”์œผ๋ฉฐ, ๋Œ€์ƒ๋ฌผ๊ฐ„์˜ ์ •๋ ฌ ๋ฐฉ์‹์— ๋”ฐ๋ผ์„œ ์ˆ˜๋™์  ๋˜๋Š” ๋Šฅ๋™์  ๋ฐฉ๋ฒ•์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. RCC(Remote Center Compliance)๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์ˆ˜๋™์ ์ธ ์ •๋ ฌ๋ฐฉ๋ฒ•์€ ์ปดํ”Œ๋ผ์ด์–ธ์Šค์™€ ๋Œ€์ƒ ๋ถ€ํ’ˆ์˜ ํŠน์ • ๋ชจ์–‘์„ ์ด์šฉํ•˜๋Š” ๋ฐ˜๋ฉด์—, ๋Šฅ๋™์ ์ธ ์ •๋ ฌ๋ฐฉ๋ฒ•์€ ๋น„์ „์ด๋‚˜ ์กฐ๋ฆฝ ์‹œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ˜๋ ฅ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋Œ€์ƒ๋ฌผ๊ฐ„์˜ ์ •๋ ฌ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ˆ˜๋™์  ์ •๋ ฌ ๋ฐฉ๋ฒ•์€ ํŠน๋ณ„ํ•œ ์ธก์ •์ด๋‚˜ ๋…ธ๋ ฅ ์—†์ด ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์ง€๋งŒ, ๋ถ€ํ’ˆ์˜ ์ฑ”๋ฒ„(Chamfer) ์‚ฌ์ด์ฆˆ๋‚˜ ํŽ™์˜ ๊ธธ์ด ๋“ฑ์— ๋”ฐ๋ผ์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅ ์—ฌ๋ถ€๊ฐ€ ๊ฒฐ์ •๋˜์–ด ์ ์šฉ์ด ์ œํ•œ์ ์ด๋‹ค. ๋น„์ „์˜ ํ™œ์šฉ์„ ํ†ตํ•œ ์ •๋ ฌ๋„ ๋˜ํ•œ ์ ์šฉ์ด ์ œํ•œ์ ์ธ๋ฐ, ๊ทธ ์ด์œ ๋Š” ์นด๋ฉ”๋ผ์˜ ์„ค์น˜ ์œ„์น˜ ๋ฐ ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ๋”ฐ๋ฅธ ์ธก์ • ์ •ํ™•๋„์˜ ๋ฏผ๊ฐ์„ฑ ๋•Œ๋ฌธ์ด๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ํšจ๊ณผ์ ์ธ ํŽ™์ธํ™€ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์ž์œ ๋„์˜ ๊ทธ๋ฆฌํผ, ๊ฐ๋„ ์—๋Ÿฌ ์ธก์ •๊ธฐ ๋ฐ ์ธก์ •๋œ ํž˜ ์ •๋ณด๋ฅผ ๊ตฐ์ง‘ํ™”ํ•˜์—ฌ ๋Œ€์ƒ๋ฌผ๊ฐ„์˜ ์œ„์น˜ ์—๋Ÿฌ๋ฅผ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ํ•˜๋‹จ์˜ ์ฃผ์š” ์„ธ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ๋Šฅ์ด ์‹œ์Šคํ…œ ์„ค๊ณ„์— ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์‚ฌ๊ฐ ํ˜•์ƒ์˜ ํŽ™์ธํ™€ ์ž‘์—…์„ ํ†ตํ•ด ์ฆ๋ช…๋˜์—ˆ๋‹ค. ์œ„์น˜ ์—๋Ÿฌ ๋ณด์ • ์ž‘์—… ์‹œ ๋ฏธ์„ธ ์กฐ์ • ์ž‘์—…์„ ์œ„ํ•˜์—ฌ, 4 ์ž์œ ๋„๋ฅผ ์ง€๋‹Œ ๋‘ ๊ฐœ์˜ ์†๊ฐ€๋ฝ์œผ๋กœ ๊ตฌ์„ฑ๋œ ๊ทธ๋ฆฌํผ๊ฐ€ ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ์†๊ฐ€๋ฝ ๋ ๋‹จ์—๋Š” 6์ถ• ํž˜ ์„ผ์„œ๊ฐ€ ๋‚ด์žฌ๋˜์–ด ๋ฐ˜๋ ฅ ์ธก์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค. ๋กœ๋ด‡์˜ ์†๋ชฉ์— ์„ค์น˜๋œ ํž˜ ์„ผ์„œ์™€ ๋กœ๋ด‡ ํŒ”์˜ ์ž์œ ๋„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•๊ณผ๋Š” ๋‹ฌ๋ฆฌ, ์„ค๊ณ„๋œ ๋‹ค์ž์œ ๋„ ๊ทธ๋ฆฌํผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํŽ™์„ ์กฐ์ž‘ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํŽ™์˜ ์–‘ ์ธก๋ฉด์—์„œ ๋ฐœ์ƒ๋œ ๋ฐ˜๋ ฅ ์ •๋ณด๋“ค์„ ํŽ™์˜ ์œ„์น˜ ์ •๋ณด์™€ ํ•จ๊ป˜ ์ €์žฅํ•˜์—ฌ ์œ„์น˜์—๋Ÿฌ ๋„์ถœ์— ํ™œ์šฉ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. 2 ์ž์œ ๋„์˜ ์ง๊ต ๋กœ๋ด‡๊ณผ ๋ ˆ์ด์ € ๊ฑฐ๋ฆฌ ์„ผ์„œ๋กœ ๊ตฌ์„ฑ๋œ ๊ฒฌ์‹คํ•œ ๊ฐ๋„ ์ธก์ •๊ธฐ(Scanner)๊ฐ€ ํŽ™๊ณผ ํ™€ ์‚ฌ์ด๊ฐ„์˜ ๊ฐ๋„ ์—๋Ÿฌ ๋ณด์ •์„ ์œ„ํ•˜์—ฌ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. ํŽ™๊ณผ ํ™€ ์‚ฌ์ด๊ฐ„์˜ ์ ‘์ด‰ ์กฐ๊ฑด์— ๋”ฐ๋ผ์„œ ๋ชจ๋ฉ˜ํŠธ ๋ฐ˜๋ ฅ์˜ ๋ฐœ์ƒ ์œ ๋ฌด๊ฐ€ ๊ฒฐ์ •๋˜๋Š”๋ฐ, ํž˜ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋น ๋ฅด๊ณ  ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ์—๋Ÿฌ ์ถ”์ •์„ ์œ„ํ•ด์„œ๋Š” ๊ฐ๋„ ์—๋Ÿฌ ์ธก์ •์„ ํ†ตํ•œ ๋ณด์ •์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ์‚ฌ๊ฐํ˜•์ƒ์˜ ํŽ™ ์ธ ํ™€ ์ž‘์—…์˜ ๊ฒฝ์šฐ์—๋Š”, ํŽ™๊ณผ ํ™€ ์‚ฌ์ด๊ฐ„์˜ ์—ฃ์ง€ ๋ฐ ์ง€์ง€ ๋ฉด์˜ ์ˆ˜์— ๋”ฐ๋ผ์„œ ์ด 5๊ฐ€์ง€์˜ ๊ฒฝ์šฐ๋กœ ์ ‘์ด‰ ์กฐ๊ฑด์ด ๋ถ„๋ฅ˜๊ฐ€ ๋˜๋Š”๋ฐ, ๋ชจ๋ฉ˜ํŠธ๋Š” ๊ทธ ์ค‘์—์„œ ํ•œ๊ฐ€์ง€์˜ ๊ฒฝ์šฐ์—๋งŒ ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ๊ฐ๋„ ์—๋Ÿฌ ๋ณด์ •์„ ํ†ตํ•˜์—ฌ, ์ ‘์ด‰ ์กฐ๊ฑด์€ 2๊ฐ€์ง€๋กœ ์ค„์–ด๋“ค๊ฒŒ ๋˜๋ฉฐ, ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์—๋Ÿฌ ๋ณด์ • ์‹œ๊ฐ„์„ ์ค„์ด๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ํŽ™๊ณผ ํ™€ ์‚ฌ์ด๊ฐ„์˜ ์œ„์น˜ ์—๋Ÿฌ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋ชจ๋ฉ˜ํŠธ ๋ฐ˜๋ ฅ ์ •๋ณด์™€ ํŽ™์˜ ์œ„์น˜ ์ •๋ณด๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๊ตฐ์ง‘ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ๊ฐ๋„ ์—๋Ÿฌ ๋ณด์ • ํ›„์—๋„, ๋ชจ๋ฉ˜ํŠธ๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋‚จ๊ฒŒ ๋˜๋ฉฐ ์ด๋Ÿฌํ•œ ํ˜ผํ•ฉ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ๋„ ์œ„์น˜ ์—๋Ÿฌ๋ฅผ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” ์ธ๊ณต์ง€๋Šฅ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ, ๊ธฐ๊ณ„ ํ•™์Šต์—์„œ ์‚ฌ์šฉ๋˜๋Š” ๋‘ ๊ฐ€์ง€์˜ ๋Œ€ํ‘œ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜, K ํ‰๊ท  ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋‹ค์–‘ํ•œ ์ธก์ • ๋ฐ์ดํ„ฐ ์„ธํŠธ๋“ค์— ์ ์šฉํ•˜์˜€๋‹ค. ์—๋Ÿฌ ์ถ”์ถœ ์‹œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ •ํ™•๋„์™€ ๊ฒฌ์‹คํ•จ์„ ํ™•์ธ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ™์€ ์กฐ๊ฑด์—์„œ ์ธก์ •๋˜๊ฑฐ๋‚˜ ๋‹ค๋ฅธ ์†๋„์—์„œ ์ธก์ •๋œ ์„ธ ๊ฐœ์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ์œ„์น˜ ์—๋Ÿฌ ์ถ”์ถœ์„ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. K ํ‰๊ท  ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ, ์ถ”์ถœ๋œ ์œ„์น˜ ์—๋Ÿฌ์˜ ์ •ํ™•๋„์™€ ๊ฐ๊ฐ์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ์ถ”์ถœ๋œ ์œ„์น˜ ์—๋Ÿฌ ๊ฐ’๋“ค์˜ ํŽธ์ฐจ๋Š” ๊ฐ๊ฐ 0.29mm, 0.14mm ์ด๋‚ด์ด์ง€๋งŒ, ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒฝ์šฐ์—๋Š” ๊ฐ๊ฐ 0.44mm, 0.43mm๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. K ํ‰๊ท  ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์œ„์น˜ ์—๋Ÿฌ ์ถ”์ถœ์—์„œ ์•ˆ์ •์ ์ธ ์ •ํ™•๋„์™€ ๊ฒฌ์‹คํ•จ์„ ๊ฐ€์ง€๋ฉฐ, ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ ๋ชจ๋ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์œ„ํ•˜์—ฌ ์ œํ•œ์กฐ๊ฑด์„ ์ง€๋‹Œ ํŒŒ๋ผ๋ฏธํ„ฐ ์‚ฌ์šฉ์„ ํ•„์š”๋กœ ํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ผ์„œ๋กœ๋ถ€ํ„ฐ์˜ ์ •๋ณด์— ์˜์ง€ํ•˜์ง€ ์•Š๊ณ , ๊ธด ๋‚˜์„ ํ˜• ๊ถค์ ๋งŒ์„ ์ด์šฉํ•˜์—ฌ ์—๋Ÿฌ ๋ณด์ •์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ธ”๋ผ์ธ๋“œ ์„œ์น˜(Blind Search)์™€ ๋น„๊ตํ•  ๋•Œ, ์ œ์•ˆ๋œ ์ธก์ •๊ธฐ์™€ ์œ„์น˜ ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์งง๊ณ  ํŽธ์ฐจ๊ฐ€ ์—†๋Š” ์—๋Ÿฌ ๋ณด์ • ์‹œ๊ฐ„์˜ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ฃผ์–ด์ง„ ๊ฒ€์ƒ‰ ์˜์—ญ์„ ์ˆ˜์ง ์ˆ˜ํ‰์œผ๋กœ ์›€์ง์ด๋Š” ์งง์€ XY ๊ถค์ ์„ ์‚ฌ์šฉํ•˜์—ฌ ์—๋Ÿฌ ๋ณด์ • ์‹œ๊ฐ„์„ ๋‹จ์ถ• ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๊ณ , ๊ฐ๋„ ์—๋Ÿฌ ๋ณด์ •์„ ํ†ตํ•˜์—ฌ ์ ‘์ด‰ ์กฐ๊ฑด ๊ฒฝ์šฐ์˜ ์ˆ˜๋ฅผ ์ค„์ด๋ฉด์„œ ์—๋Ÿฌ ๋ณด์ •์„ ์œ„ํ•œ ์‹œ๊ฐ„์— ํŽธ์ฐจ๊ฐ€ ์—†๋„๋ก ํ•˜์˜€๋‹ค.Peg-In-Hole is the one of basic tasks for robotic assembly. For successful Peg-In-Hole, the position and orientation alignment between mating parts is very important because small error can induce jamming and wedging which generates excessive force leading to damages on mating parts during insertion. A lot of researches for Peg-In-Hole task have been underway and it can be categorized into passive and active approaches. The passive approach represented by Remote Center Compliance uses the compliance and shape of mating parts for alignment, whereas the active approach uses measurement from vision, force or both of them. Passive approach has strength in which alignment can be done passively without any other measurements but applications are limited because it depends on the shape of mating parts like chamfer size and length of peg. Utilization of vision is also limited because of sensitivity in accuracy which is affected significantly by camera location and surrounding environment. In this dissertation, a dexterous gripper with an angular error measuring instrument and reliable position error estimation algorithm by clustering the force dataset is proposed for Peg-In-Hole task. Three main key features stated below are implemented in the system design and tested with square Peg-In-Hole experiments. The dexterous gripper which consists of 4 DOF(Degree Of Freedom) two fingers embedded with 6 axis force sensors at the fingertip is designed for micro manipulation during error recovery. Unlike the usual method in which force sensor is mounted on the robot wrist and peg is manipulated by robot arm, the designed dexterous gripper is used for both of grasping and manipulating peg. Reaction force generated on both side of peg is also measured at fingertip and recorded with peg position for error estimation. Robust angle measuring instrument, Scanner, consisted of 2DOF manipulator and laser distance sensor is also designed and implemented for detecting the angular error between peg and hole. Depending on the contact condition, its decided whether moment is generated or not, thus angular error compensation is necessary for fast and reliable error estimation based on the force data. In case of square Peg-In-Hole, the contact condition can be classified into 5 cases depending on the number of edge and supporting area between peg and hole and moment is generated in only one case. With the angular error compensation, the number of contact condition can be diminished to 2 cases thus shortened recovery time can be accomplished. To extract the position error between peg and hole, error estimation with clustering algorithm is applied to the measured dataset of moment and peg position. Even after angular error compensation, there still exists the condition which generates no reaction moment, thus artificial intelligence which can extract the position error among mixed dataset is required. Two representative algorithms, K means algorithms and Gaussian Mixture Model algorithm, commonly used in machine learning for clustering dataset are applied to various datasets constructed with position and moment for estimating position error. Two datasets, one constructed with the three datasets measured at same condition and the other constructed with three datasets measured with different velocity are used to check accuracy and robustness in error estimation from both of algorithm. The accuracy of estimated position error and deviation among estimated error in each dataset from K means algorithm is within 0.29mm and 0.14mm whereas both of that from Gaussian Mixture Model algorithm is within 0.44mm and 0.43mm. K means algorithm shows stable accuracy and robustness on position error estimation whereas the Gaussian Mixture Model algorithm needs to use constrained parameter for both of them. Comparing with blind search which uses no information from sensors and long spiral trajectory for error recovery, the proposed measurement system and algorithms have advantages in terms of recovery time and no variation of it. Short XY trajectory which moves horizontally and vertically in given search area can be used and error recovery time have no variation regardless of position error by diminishing the number of contact conditions through angular error compensation.Chapter 1. Introduction 1 1.1. Robotic Assembly and Peg-In-Hole Task 1 1.2. Previous Research Works 2 1.2.1. Passive approaches 3 1.2.2. Active approaches 5 1.3. Purpose and Contribution of Research 9 Chapter 2. Contact Condition Analysis 12 2.1. Classification of Contact Condition 12 2.1.1. Connected Component Labeling 12 2.1.2. Binary image generation procedure 13 2.1.3. Analysis results for contact condition 14 2.2. Force and Moment depending on Contact Condition 17 Chapter 3. Design Synthesis of Gripper and Scanner 21 3.1. Overall Design Overview 21 3.2. Design and Mechanism of Finger 23 3.2.1. Advantages of parallel mechanism 23 3.2.2. Mechanism description of finger 28 3.2.3. Kinematics of finger 31 3.3 Design and Mechanism of Scanner 33 3.3.1. Mechanism description 33 3.3.2. FEM analysis for deflection compensation 34 Chapter 4. Error Recovery Algorithms 40 4.1. Clustering for Error Estimation 40 4.1.1. K means algorithm 41 4.1.2. Gaussian Mixture Model algorithm 42 4.2. Procedure for Error Recovery 44 4.3. Comparison of Error Recovery Algorithms 45 4.3.1. Comparison of trajectory in blind and XY search 45 4.3.2. Comparison of trajectory for position error recovery 46 4.3.3. Comparison of trajectory for angular error recovery 49 4.3.4. Comparison of variation in recovery time 50 Chapter 5. Experimental Results 52 5.1. Angular Error Measurement of Scanner 52 5.1.1. Verification of scanner accuracy and repeatability 52 5.1.2. Measurement and alignment of angular error 56 5.2. Reaction Moment Measurement at Fingertip 58 5.2.1. Measurement of moment data 58 5.2.2. Description of measurement condition 59 5.2.3. Clustering results from K means algorithm 61 5.2.4. Clustering results from Gaussian Mixture Model Algorithm 64 5.2.5 Comparison of clustering result 69 Chapter 6. Conclusion 71 Bibliography 74 Abstract in Korean 78Docto

    Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot

    Full text link
    [EN] High dexterity is required in tasks in which there is contact between objects, such as surface conditioning (wiping, polishing, scuffing, sanding, etc.), specially when the location of the objects involved is unknown or highly inaccurate because they are moving, like a car body in automotive industry lines. These applications require the human adaptability and the robot accuracy. However, sharing the same workspace is not possible in most cases due to safety issues. Hence, a multi-modal teleoperation system combining haptics and an inertial motion capture system is introduced in this work. The human operator gets the sense of touch thanks to haptic feedback, whereas using the motion capture device allows more naturalistic movements. Visual feedback assistance is also introduced to enhance immersion. A Baxter dual-arm robot is used to offer more flexibility and manoeuvrability, allowing to perform two independent operations simultaneously. Several tests have been carried out to assess the proposed system. As it is shown by the experimental results, the task duration is reduced and the overall performance improves thanks to the proposed teleoperation method.This research was funded by Generalitat Valenciana (Grants GV/2021/074 and GV/2021/181) and by the SpanishGovernment (Grants PID2020-118071GB-I00 and PID2020-117421RBC21 funded by MCIN/AEI/10.13039/501100011033). This work was also supported byCoordenacao de Aperfeiaoamento de Pessoal de Nivel Superior (CAPES Brasil) under Finance Code 001, by CEFET-MG, and by a Royal Academy of Engineering Chair in Emerging Technologies to YD.Girbรฉs-Juan, V.; Schettino, V.; Gracia Calandin, LI.; Solanes, JE.; Demiris, Y.; Tornero, J. (2022). Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot. Journal on Multimodal User Interfaces. 16(2):219-238. https://doi.org/10.1007/s12193-021-00386-8219238162Hรคgele M, Nilsson K, Pires JN, Bischoff R (2016) Industrial robotics. Springer, Cham, pp 1385โ€“1422. https://doi.org/10.1007/978-3-319-32552-1_54Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035โ€“2057. https://doi.org/10.1016/j.automatica.2006.06.027Son HI (2019) The contribution of force feedback to human performance in the teleoperation of multiple unmanned aerial vehicles. J Multimodal User Interfaces 13(4):335โ€“342Jones B, Maiero J, Mogharrab A, Aguliar IA, Adhikari A, Riecke BE, Kruijff E, Neustaedter C, Lindeman RW (2020) Feetback: augmenting robotic telepresence with haptic feedback on the feet. In: Proceedings of the 2020 international conference on multimodal interaction, pp 194โ€“203Merrad W, Hรฉloir A, Kolski C, Krรผger A (2021) Rfid-based tangible and touch tabletop for dual reality in crisis management context. J Multimodal User Interfaces. https://doi.org/10.1007/s12193-021-00370-2Schettino V, Demiris Y (2019) Inference of user-intention in remote robot wheelchair assistance using multimodal interfaces. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 4600โ€“4606Casper J, Murphy RR (2003) Humanโ€“robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Trans Syst Man Cybern Part B (Cybern) 33(3):367โ€“385. https://doi.org/10.1109/TSMCB.2003.811794Chen JY (2010) UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics 53(8):940โ€“950. https://doi.org/10.1080/00140139.2010.500404 (pMID: 20658388.)Aleotti J, Micconi G, Caselli S, Benassi G, Zambelli N, Bettelli M, Calestani D, Zappettini A (2019) Haptic teleoperation of UAV equipped with gamma-ray spectrometer for detection and identification of radio-active materials in industrial plants. In: Tolio T, Copani G, Terkaj W (eds) Factories of the future: the Italian flagship initiative. Springer, Cham, pp 197โ€“214. https://doi.org/10.1007/978-3-319-94358-9_9Santos Carreras L (2012) Increasing haptic fidelity and ergonomics in teleoperated surgery. PhD Thesis, EPFL, Lausanne, pp 1โ€“188. https://doi.org/10.5075/epfl-thesis-5412Hatzfeld C, Neupert C, Matich S, Braun M, Bilz J, Johannink J, Miller J, Pott PP, Schlaak HF, Kupnik M, Werthschรผtzky R, Kirschniak A (2017) A teleoperated platform for transanal single-port surgery: ergonomics and workspace aspects. In: IEEE world haptics conference (WHC), pp 1โ€“6. https://doi.org/10.1109/WHC.2017.7989847Burns JO, Mellinkoff B, Spydell M, Fong T, Kring DA, Pratt WD, Cichan T, Edwards CM (2019) Science on the lunar surface facilitated by low latency telerobotics from a lunar orbital platform-gateway. Acta Astronaut 154:195โ€“203. https://doi.org/10.1016/j.actaastro.2018.04.031Sivฤev S, Coleman J, Omerdiฤ‡ E, Dooly G, Toal D (2018) Underwater manipulators: a review. Ocean Eng 163:431โ€“450. https://doi.org/10.1016/j.oceaneng.2018.06.018Abich J, Barber DJ (2017) The impact of humanโ€“robot multimodal communication on mental workload, usability preference, and expectations of robot behavior. J Multimodal User Interfaces 11(2):211โ€“225. https://doi.org/10.1007/s12193-016-0237-4Hong A, Lee DG, Bรผlthoff HH, Son HI (2017) Multimodal feedback for teleoperation of multiple mobile robots in an outdoor environment. J Multimodal User Interfaces 11(1):67โ€“80. https://doi.org/10.1007/s12193-016-0230-yKatyal KD, Brown CY, Hechtman SA, Para MP, McGee TG, Wolfe KC, Murphy RJ, Kutzer MDM, Tunstel EW, McLoughlin MP, Johannes MS (2014) Approaches to robotic teleoperation in a disaster scenario: from supervised autonomy to direct control. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1874โ€“1881. https://doi.org/10.1109/IROS.2014.6942809Niemeyer G, Preusche C, Stramigioli S, Lee D (2016) Telerobotics. Springer, Cham, pp 1085โ€“1108. https://doi.org/10.1007/978-3-319-32552-1_43Li J, Li Z, Hauser K (2017) A study of bidirectionally telepresent tele-action during robot-mediated handover. In: Proceedingsโ€”IEEE international conference on robotics and automation, pp 2890โ€“2896. https://doi.org/10.1109/ICRA.2017.7989335Peng XB, Kanazawa A, Malik J, Abbeel P, Levine S (2018) Sfv: reinforcement learning of physical skills from videos. ACM Trans. Graph. 37(6):178:1-178:14. https://doi.org/10.1145/3272127.3275014Coleca F, State A, Klement S, Barth E, Martinetz T (2015) Self-organizing maps for hand and full body tracking. Neurocomputing 147: 174โ€“184. Advances in self-organizing maps subtitle of the special issue: selected papers from the workshop on self-organizing maps 2012 (WSOM 2012). https://doi.org/10.1016/j.neucom.2013.10.041Von Marcard T, Rosenhahn B, Black MJ, Pons-Moll G (2017) Sparse inertial poser: automatic 3d human pose estimation from sparse Imus. In: Computer graphics forum, vol 36. Wiley, pp 349โ€“360Zhao J (2018) A review of wearable IMU (inertial-measurement-unit)-based pose estimation and drift reduction technologies. J Phys Conf Ser 1087:042003. https://doi.org/10.1088/1742-6596/1087/4/042003Malleson C, Gilbert A, Trumble M, Collomosse J, Hilton A, Volino M (2018) Real-time full-body motion capture from video and IMUs. In: Proceedingsโ€”2017 international conference on 3D vision, 3DV 2017 (September), pp 449โ€“457. https://doi.org/10.1109/3DV.2017.00058Du G, Zhang P, Mai J, Li Z (2012) Markerless kinect-based hand tracking for robot teleoperation. Int J Adv Robot Syst 9(2):36. https://doi.org/10.5772/50093ร‡oban M, Gelen G (2018) Wireless teleoperation of an industrial robot by using myo arm band. In: International conference on artificial intelligence and data processing (IDAP), pp 1โ€“6. https://doi.org/10.1109/IDAP.2018.8620789Lipton JI, Fay AJ, Rus D (2018) Baxterโ€™s homunculus: virtual reality spaces for teleoperation in manufacturing. IEEE Robot Autom Lett 3(1):179โ€“186. https://doi.org/10.1109/LRA.2017.2737046Zhang T, McCarthy Z, Jow O, Lee D, Chen X, Goldberg K, Abbeel P (2018) Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In: IEEE international conference on robotics and automation (ICRA), pp 5628โ€“5635. https://doi.org/10.1109/ICRA.2018.8461249Hannaford B, Okamura AM (2016) Haptics. Springer, Cham, pp 1063โ€“1084. https://doi.org/10.1007/978-3-319-32552-1_42Rodrรญguez J-L, Velร zquez R (2012) Haptic rendering of virtual shapes with the Novint Falcon. Proc Technol 3:132โ€“138. https://doi.org/10.1016/J.PROTCY.2012.03.014Teklemariam HG, Das AK (2017) A case study of phantom omni force feedback device for virtual product design. Int J Interact Des Manuf (IJIDeM) 11(4):881โ€“892. https://doi.org/10.1007/s12008-015-0274-3Karbasizadeh N, Zarei M, Aflakian A, Masouleh MT, Kalhor A (2018) Experimental dynamic identification and model feed-forward control of Novint Falcon haptic device. Mechatronics 51:19โ€“30. https://doi.org/10.1016/j.mechatronics.2018.02.013Georgiou T, Demiris Y (2017) Adaptive user modelling in car racing games using behavioural and physiological data. User Model User-Adapted Interact 27(2):267โ€“311. https://doi.org/10.1007/s11257-017-9192-3Son HI (2019) The contribution of force feedback to human performance in the teleoperation of multiple unmanned aerial vehicles. J Multimodal User Interfaces 13(4):335โ€“342. https://doi.org/10.1007/s12193-019-00292-0Ramรญrez-Fernรกndez C, Morรกn AL, Garcรญa-Canseco E (2015) Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In: 2015 9th international conference on pervasive computing technologies for healthcare (PervasiveHealth), pp 280โ€“286. https://doi.org/10.4108/icst.pervasivehealth.2015.260242Saito Y, Raksincharoensak P (2019) Effect of risk-predictive haptic guidance in one-pedal driving mode. Cognit Technol Work 21(4):671โ€“684. https://doi.org/10.1007/s10111-019-00558-3Girbรฉs V, Armesto L, Dols J, Tornero J (2016) Haptic feedback to assist bus drivers for pedestrian safety at low speed. IEEE Trans Haptics 9(3):345โ€“357. https://doi.org/10.1109/TOH.2016.2531686Girbรฉs V, Armesto L, Dols J, Tornero J (2017) An active safety system for low-speed bus braking assistance. IEEE Trans Intell Transp Syst 18(2):377โ€“387. https://doi.org/10.1109/TITS.2016.2573921Escobar-Castillejos D, Noguez J, Neri L, Magana A, Benes B (2016) A review of simulators with haptic devices for medical training. J Med Syst 40(4):104. https://doi.org/10.1007/s10916-016-0459-8Coles TR, Meglan D, John NW (2011) The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans Haptics 4(1):51โ€“66. https://doi.org/10.1109/TOH.2010.19Okamura AM, Verner LN, Reiley CE, Mahvash M (2010) Haptics for robot-assisted minimally invasive surgery. In: Kaneko M, Nakamura Y (eds) Robotics research. Springer tracts in advanced robotics, vol 66. Springer, Berlin, pp 361โ€“372. https://doi.org/10.1007/978-3-642-14743-2_30Ehrampoosh S, Dave M, Kia MA, Rablau C, Zadeh MH (2013) Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies. Comput Aided Surg 18(5โ€“6):129โ€“141. https://doi.org/10.3109/10929088.2013.839744Ju Z, Yang C, Li Z, Cheng L, Ma H (2014) Teleoperation of humanoid Baxter robot using haptic feedback. In: 2014 international conference on multisensor fusion and information integration for intelligent systems (MFI). IEEE, pp 1โ€“6. https://doi.org/10.1109/MFI.2014.6997721Clark JP, Lentini G, Barontini F, Catalano MG, Bianchi M, Oโ€™Malley MK (2019) On the role of wearable haptics for force feedback in teleimpedance control for dual-arm robotic teleoperation. In: International conference on robotics and automation (ICRA), pp 5187โ€“5193. https://doi.org/10.1109/ICRA.2019.8793652Gracia L, Solanes JE, Muรฑoz-Benavent P, Miro JV, Perez-Vidal C, Tornero J (2018) Adaptive sliding mode control for robotic surface treatment using force feedback. Mechatronics 52:102โ€“118. https://doi.org/10.1016/j.mechatronics.2018.04.008Zhu D, Xu X, Yang Z, Zhuang K, Yan S, Ding H (2018) Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments. Tribol Int 120:93โ€“98. https://doi.org/10.1016/j.triboint.2017.12.043Smith C, Karayiannidis Y, Nalpantidis L, Gratal X, Qi P, Dimarogonas DV, Kragic D (2012) Dual arm manipulationโ€”a survey. Robot Auton Syst 60(10):1340โ€“1353. https://doi.org/10.1016/j.robot.2012.07.005Girbรฉs-Juan V, Schettino V, Demiris Y, Tornero J (2021) Haptic and visual feedback assistance for dual-arm robot teleoperation in surface conditioning tasks. IEEE Trans Haptics 14(1):44โ€“56. https://doi.org/10.1109/TOH.2020.3004388Tunstel EW Jr, Wolfe KC, Kutzer MD, Johannes MS, Brown CY, Katyal KD, Para MP, Zeher MJ (2013) Recent enhancements to mobile bimanual robotic teleoperation with insight toward improving operator control. Johns Hopkins APL Tech Digest 32(3):584Garcรญa A, Solanes JE, Gracia L, Muรฑoz-Benavent P, Girbรฉs-Juan V, Tornero J (2021) Bimanual robot control for surface treatment tasks. Int J Syst Sci. https://doi.org/10.1080/00207721.2021.1938279Jasim IF, Plapper PW, Voos H (2014) Position identification in force-guided robotic peg-in-hole assembly tasks. Proc CIRP 23((C)):217โ€“222. https://doi.org/10.1016/j.procir.2014.10.077Song HC, Kim YL, Song JB (2016) Guidance algorithm for complex-shape peg-in-hole strategy based on geometrical information and force control. Adv Robot 30(8):552โ€“563. https://doi.org/10.1080/01691864.2015.1130172Kramberger A, Gams A, Nemec B, Chrysostomou D, Madsen O, Ude A (2017) Generalization of orientation trajectories and force-torque profiles for robotic assembly. Robot Auton Syst 98:333โ€“346. https://doi.org/10.1016/j.robot.2017.09.019Pliego-Jimรฉnez J, Arteaga-Pรฉrez MA (2015) Adaptive position/force control for robot manipulators in contact with a rigid surface with unknown parameters. In: European control conference (ECC), pp 3603โ€“3608. https://doi.org/10.1109/ECC.2015.7331090Gierlak P, Szuster M (2017) Adaptive position/force control for robot manipulator in contact with a flexible environment. Robot Auton Syst 95:80โ€“101. https://doi.org/10.1016/j.robot.2017.05.015Solanes JE, Gracia L, Muรฑoz-Benavent P, Miro JV, Girbรฉs V, Tornero J (2018) Humanโ€“robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Trans 80:528โ€“541. https://doi.org/10.1016/j.isatra.2018.05.013Ravandi AK, Khanmirza E, Daneshjou K (2018) Hybrid force/position control of robotic arms manipulating in uncertain environments based on adaptive fuzzy sliding mode control. Appl Soft Comput 70:864โ€“874. https://doi.org/10.1016/j.asoc.2018.05.048Solanes JE, Gracia L, Muรฑoz-Benavent P, Esparza A, Miro JV, Tornero J (2018) Adaptive robust control and admittance control for contact-driven robotic surface conditioning. Robot Comput Integr Manuf 54:115โ€“132. https://doi.org/10.1016/j.rcim.2018.05.003Perez-Vidal C, Gracia L, Sanchez-Caballero S, Solanes JE, Saccon A, Tornero J (2019) Design of a polishing tool for collaborative robotics using minimum viable product approach. Int J Comput Integr Manuf 32(9):848โ€“857. https://doi.org/10.1080/0951192X.2019.1637026Chen F, Zhao H, Li D, Chen L, Tan C, Ding H (2019) Contact force control and vibration suppression in robotic polishing with a smart end effector. Robot Comput Integr Manuf 57:391โ€“403. https://doi.org/10.1016/j.rcim.2018.12.019Mohammad AEK, Hong J, Wang D, Guan Y (2019) Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications. Robot Comput Integr Manuf 55:65โ€“75. https://doi.org/10.1016/j.rcim.2018.07.005Waldron KJ, Schmiedeler J (2016) Kinematics. Springer, Cham, pp 11โ€“36. https://doi.org/10.1007/978-3-319-32552-1_2Featherstone R, Orin DE (2016) Dynamics. Springer, Cham, pp 37โ€“66. https://doi.org/10.1007/978-3-319-32552-1_3Wen K, Necsulescu D, Sasiadek J (2008) Haptic force control based on impedance/admittance control aided by visual feedback. Multimed Tools Appl 37(1):39โ€“52. https://doi.org/10.1007/s11042-007-0172-1Tzafestas C, Velanas S, Fakiridis G (2008) Adaptive impedance control in haptic teleoperation to improve transparency under time-delay. In: IEEE international conference on robotics and automation, pp 212โ€“219. https://doi.org/10.1109/ROBOT.2008.4543211Chiaverini S, Oriolo G, Maciejewski AA (2016) Redundant robots. Springer, Cham, pp 221โ€“242. https://doi.org/10.1007/978-3-319-32552-1_10Ogata K (1987) Discrete-time control systems. McGraw-Hill, New YorkGarcรญa A, Girbรฉs-Juan V, Solanes JE, Gracia L, Perez-Vidal C, Tornero J (2020) Humanโ€“robot cooperation for surface repair combining automatic and manual modes. IEEE Access 8:154024โ€“154035. https://doi.org/10.1109/ACCESS.2020.301450
    corecore