49,464 research outputs found

    Guessing based on length functions

    Full text link
    A guessing wiretapper's performance on a Shannon cipher system is analyzed for a source with memory. Close relationships between guessing functions and length functions are first established. Subsequently, asymptotically optimal encryption and attack strategies are identified and their performances analyzed for sources with memory. The performance metrics are exponents of guessing moments and probability of large deviations. The metrics are then characterized for unifilar sources. Universal asymptotically optimal encryption and attack strategies are also identified for unifilar sources. Guessing in the increasing order of Lempel-Ziv coding lengths is proposed for finite-state sources, and shown to be asymptotically optimal. Finally, competitive optimality properties of guessing in the increasing order of description lengths and Lempel-Ziv coding lengths are demonstrated.Comment: 16 pages, Submitted to IEEE Transactions on Information Theory, Special issue on Information Theoretic Security, Simplified proof of Proposition

    Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory

    Full text link
    We present an information-theoretic approach to lower bound the oracle complexity of nonsmooth black box convex optimization, unifying previous lower bounding techniques by identifying a combinatorial problem, namely string guessing, as a single source of hardness. As a measure of complexity we use distributional oracle complexity, which subsumes randomized oracle complexity as well as worst-case oracle complexity. We obtain strong lower bounds on distributional oracle complexity for the box [1,1]n[-1,1]^n, as well as for the LpL^p-ball for p1p \geq 1 (for both low-scale and large-scale regimes), matching worst-case upper bounds, and hence we close the gap between distributional complexity, and in particular, randomized complexity, and worst-case complexity. Furthermore, the bounds remain essentially the same for high-probability and bounded-error oracle complexity, and even for combination of the two, i.e., bounded-error high-probability oracle complexity. This considerably extends the applicability of known bounds

    Tight Bounds on the R\'enyi Entropy via Majorization with Applications to Guessing and Compression

    Full text link
    This paper provides tight bounds on the R\'enyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the R\'enyi entropy of a discrete random variable with a finite support is derived as a function of the size of the support, and the ratio of the maximal to minimal probability masses. This work was inspired by the recently published paper by Cicalese et al., which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper to R\'enyi entropies of arbitrary positive orders. In view of these generalized bounds and the works by Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data compression of discrete memoryless sources.Comment: The paper was published in the Entropy journal (special issue on Probabilistic Methods in Information Theory, Hypothesis Testing, and Coding), vol. 20, no. 12, paper no. 896, November 22, 2018. Online available at https://www.mdpi.com/1099-4300/20/12/89

    "Graph Entropy, Network Coding and Guessing games"

    Get PDF
    We introduce the (private) entropy of a directed graph (in a new network coding sense) as well as a number of related concepts. We show that the entropy of a directed graph is identical to its guessing number and can be bounded from below with the number of vertices minus the size of the graph’s shortest index code. We show that the Network Coding solvability of each specific multiple unicast network is completely determined by the entropy (as well as by the shortest index code) of the directed graph that occur by identifying each source node with each corresponding target node. Shannon’s information inequalities can be used to calculate up- per bounds on a graph’s entropy as well as calculating the size of the minimal index code. Recently, a number of new families of so-called non-shannon-type information inequalities have been discovered. It has been shown that there exist communication networks with a ca- pacity strictly ess than required for solvability, but where this fact cannot be derived using Shannon’s classical information inequalities. Based on this result we show that there exist graphs with an entropy that cannot be calculated using only Shannon’s classical information inequalities, and show that better estimate can be obtained by use of certain non-shannon-type information inequalities

    Quantifying pervasive authentication: the case of the Hancke-Kuhn protocol

    Full text link
    As mobile devices pervade physical space, the familiar authentication patterns are becoming insufficient: besides entity authentication, many applications require, e.g., location authentication. Many interesting protocols have been proposed and implemented to provide such strengthened forms of authentication, but there are very few proofs that such protocols satisfy the required security properties. The logical formalisms, devised for reasoning about security protocols on standard computer networks, turn out to be difficult to adapt for reasoning about hybrid protocols, used in pervasive and heterogenous networks. We refine the Dolev-Yao-style algebraic method for protocol analysis by a probabilistic model of guessing, needed to analyze protocols that mix weak cryptography with physical properties of nonstandard communication channels. Applying this model, we provide a precise security proof for a proximity authentication protocol, due to Hancke and Kuhn, that uses a subtle form of probabilistic reasoning to achieve its goals.Comment: 31 pages, 2 figures; short version of this paper appeared in the Proceedings of MFPS 201

    Guessing Revisited: A Large Deviations Approach

    Full text link
    The problem of guessing a random string is revisited. A close relation between guessing and compression is first established. Then it is shown that if the sequence of distributions of the information spectrum satisfies the large deviation property with a certain rate function, then the limiting guessing exponent exists and is a scalar multiple of the Legendre-Fenchel dual of the rate function. Other sufficient conditions related to certain continuity properties of the information spectrum are briefly discussed. This approach highlights the importance of the information spectrum in determining the limiting guessing exponent. All known prior results are then re-derived as example applications of our unifying approach.Comment: 16 pages, to appear in IEEE Transaction on Information Theor

    The Shannon Cipher System with a Guessing Wiretapper: General Sources

    Full text link
    The Shannon cipher system is studied in the context of general sources using a notion of computational secrecy introduced by Merhav & Arikan. Bounds are derived on limiting exponents of guessing moments for general sources. The bounds are shown to be tight for iid, Markov, and unifilar sources, thus recovering some known results. A close relationship between error exponents and correct decoding exponents for fixed rate source compression on the one hand and exponents for guessing moments on the other hand is established.Comment: 24 pages, Submitted to IEEE Transactions on Information Theor
    corecore