10,915 research outputs found

    Guarantees of Total Variation Minimization for Signal Recovery

    Full text link
    In this paper, we consider using total variation minimization to recover signals whose gradients have a sparse support, from a small number of measurements. We establish the proof for the performance guarantee of total variation (TV) minimization in recovering \emph{one-dimensional} signal with sparse gradient support. This partially answers the open problem of proving the fidelity of total variation minimization in such a setting \cite{TVMulti}. In particular, we have shown that the recoverable gradient sparsity can grow linearly with the signal dimension when TV minimization is used. Recoverable sparsity thresholds of TV minimization are explicitly computed for 1-dimensional signal by using the Grassmann angle framework. We also extend our results to TV minimization for multidimensional signals. Stability of recovering signal itself using 1-D TV minimization has also been established through a property called "almost Euclidean property for 1-dimensional TV norm". We further give a lower bound on the number of random Gaussian measurements for recovering 1-dimensional signal vectors with NN elements and KK-sparse gradients. Interestingly, the number of needed measurements is lower bounded by Ω((NK)12)\Omega((NK)^{\frac{1}{2}}), rather than the O(Klog(N/K))O(K\log(N/K)) bound frequently appearing in recovering KK-sparse signal vectors.Comment: lower bounds added; version with Gaussian width, improved bounds; stability results adde

    Stable image reconstruction using total variation minimization

    Get PDF
    This article presents near-optimal guarantees for accurate and robust image recovery from under-sampled noisy measurements using total variation minimization. In particular, we show that from O(slog(N)) nonadaptive linear measurements, an image can be reconstructed to within the best s-term approximation of its gradient up to a logarithmic factor, and this factor can be removed by taking slightly more measurements. Along the way, we prove a strengthened Sobolev inequality for functions lying in the null space of suitably incoherent matrices.Comment: 25 page

    Robust analysis 1\ell_1-recovery from Gaussian measurements and total variation minimization

    Full text link
    Analysis 1\ell_1-recovery refers to a technique of recovering a signal that is sparse in some transform domain from incomplete corrupted measurements. This includes total variation minimization as an important special case when the transform domain is generated by a difference operator. In the present paper we provide a bound on the number of Gaussian measurements required for successful recovery for total variation and for the case that the analysis operator is a frame. The bounds are particularly suitable when the sparsity of the analysis representation of the signal is not very small

    Sampling in the Analysis Transform Domain

    Full text link
    Many signal and image processing applications have benefited remarkably from the fact that the underlying signals reside in a low dimensional subspace. One of the main models for such a low dimensionality is the sparsity one. Within this framework there are two main options for the sparse modeling: the synthesis and the analysis ones, where the first is considered the standard paradigm for which much more research has been dedicated. In it the signals are assumed to have a sparse representation under a given dictionary. On the other hand, in the analysis approach the sparsity is measured in the coefficients of the signal after applying a certain transformation, the analysis dictionary, on it. Though several algorithms with some theory have been developed for this framework, they are outnumbered by the ones proposed for the synthesis methodology. Given that the analysis dictionary is either a frame or the two dimensional finite difference operator, we propose a new sampling scheme for signals from the analysis model that allows to recover them from their samples using any existing algorithm from the synthesis model. The advantage of this new sampling strategy is that it makes the existing synthesis methods with their theory also available for signals from the analysis framework.Comment: 13 Pages, 2 figure

    1\ell^1-Analysis Minimization and Generalized (Co-)Sparsity: When Does Recovery Succeed?

    Full text link
    This paper investigates the problem of signal estimation from undersampled noisy sub-Gaussian measurements under the assumption of a cosparse model. Based on generalized notions of sparsity, we derive novel recovery guarantees for the 1\ell^{1}-analysis basis pursuit, enabling highly accurate predictions of its sample complexity. The corresponding bounds on the number of required measurements do explicitly depend on the Gram matrix of the analysis operator and therefore particularly account for its mutual coherence structure. Our findings defy conventional wisdom which promotes the sparsity of analysis coefficients as the crucial quantity to study. In fact, this common paradigm breaks down completely in many situations of practical interest, for instance, when applying a redundant (multilevel) frame as analysis prior. By extensive numerical experiments, we demonstrate that, in contrast, our theoretical sampling-rate bounds reliably capture the recovery capability of various examples, such as redundant Haar wavelets systems, total variation, or random frames. The proofs of our main results build upon recent achievements in the convex geometry of data mining problems. More precisely, we establish a sophisticated upper bound on the conic Gaussian mean width that is associated with the underlying 1\ell^{1}-analysis polytope. Due to a novel localization argument, it turns out that the presented framework naturally extends to stable recovery, allowing us to incorporate compressible coefficient sequences as well
    corecore