26,885 research outputs found

    Guaranteed Lower Eigenvalue Bound of Steklov Operator with Conforming Finite Element Methods

    Full text link
    For the eigenvalue problem of the Steklov differential operator, by following Liu's approach, an algorithm utilizing the conforming finite element method (FEM) is proposed to provide guaranteed lower bounds for the eigenvalues. The proposed method requires the a priori error estimation for FEM solution to nonhomogeneous Neumann problems, which is solved by constructing the hypercircle for the corresponding FEM spaces and boundary conditions. Numerical examples are also shown to confirm the efficiency of our proposed method.Comment: 21 pages, 4 figures, 4 table

    Fully computable a posteriori error bounds for eigenfunctions

    Full text link
    Fully computable a posteriori error estimates for eigenfunctions of compact self-adjoint operators in Hilbert spaces are derived. The problem of ill-conditioning of eigenfunctions in case of tight clusters and multiple eigenvalues is solved by estimating the directed distance between the spaces of exact and approximate eigenfunctions. Derived upper bounds apply to various types of eigenvalue problems, e.g. to the (generalized) matrix, Laplace, and Steklov eigenvalue problems. These bounds are suitable for arbitrary conforming approximations of eigenfunctions, and they are fully computable in terms of approximate eigenfunctions and two-sided bounds of eigenvalues. Numerical examples illustrate the efficiency of the derived error bounds for eigenfunctions.Comment: 27 pages, 8 tables, 9 figure

    Eigenvalue enclosures and exclosures for non-self-adjoint problems in hydrodynamics

    Get PDF
    In this paper we present computer-assisted proofs of a number of results in theoretical fluid dynamics and in quantum mechanics. An algorithm based on interval arithmetic yields provably correct eigenvalue enclosures and exclosures for non-self-adjoint boundary eigenvalue problems, the eigenvalues of which are highly sensitive to perturbations. We apply the algorithm to: the Orr-Sommerfeld equation with Poiseuille profile to prove the existence of an eigenvalue in the classically unstable region for Reynolds number R=5772.221818; the Orr-Sommerfeld equation with Couette profile to prove upper bounds for the imaginary parts of all eigenvalues for fixed R and wave number α; the problem of natural oscillations of an incompressible inviscid fluid in the neighbourhood of an elliptical flow to obtain information about the unstable part of the spectrum off the imaginary axis; Squire's problem from hydrodynamics; and resonances of one-dimensional Schrödinger operators

    Limits on Sparse Data Acquisition: RIC Analysis of Finite Gaussian Matrices

    Full text link
    One of the key issues in the acquisition of sparse data by means of compressed sensing (CS) is the design of the measurement matrix. Gaussian matrices have been proven to be information-theoretically optimal in terms of minimizing the required number of measurements for sparse recovery. In this paper we provide a new approach for the analysis of the restricted isometry constant (RIC) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distributions of the extreme eigenvalues for Wishart matrices. First, we derive the probability that the restricted isometry property is satisfied for a given sufficient recovery condition on the RIC, and propose a probabilistic framework to study both the symmetric and asymmetric RICs. Then, we analyze the recovery of compressible signals in noise through the statistical characterization of stability and robustness. The presented framework determines limits on various sparse recovery algorithms for finite size problems. In particular, it provides a tight lower bound on the maximum sparsity order of the acquired data allowing signal recovery with a given target probability. Also, we derive simple approximations for the RICs based on the Tracy-Widom distribution.Comment: 11 pages, 6 figures, accepted for publication in IEEE transactions on information theor
    • …
    corecore