7 research outputs found

    Vector Field Embryogeny

    Get PDF
    We present a novel approach toward evolving artificial embryogenies, which omits the graph representation of gene regulatory networks and directly shapes the dynamics of a system, i.e., its phase space. We show the feasibility of the approach by evolving cellular differentiation, a basic feature of both biological and artificial development. We demonstrate how a spatial hierarchy formulation can be integrated into the framework and investigate the evolution of a hierarchical system. Finally, we show how the framework allows the investigation of allometry, a biological phenomenon, and its role for evolution. We find that direct evolution of allometric change, i.e., the evolutionary adaptation of the speed of system states on transient trajectories in phase space, is advantageous for a cellular differentiation task

    Modularity and symmetry in computational embryogeny

    Get PDF
    Modularity and symmetry are two properties observed in almost every engineering and biological structure. The origin of these properties in nature is still unknown. Yet, as engineers we tend to generate designs which share these properties. In this paper we will report on the origin of these properties in three dimensional evolved structures (phenotypes). The phenotypes were evolved in an evolutionarydevelopmental model of biological structures. The phenotypes were grown under a high volatility stochastic environment. The phenotypes have evolved to function within the environment using the very basic requirements. Even though neither modularity nor symmetry have been directly imposed as part of the requirements, the phenotypes were able to generate these properties after only a few hundred generations. These results may suggest that modularity and symmetry are both very fundamental properties that develop during the early stages of evolution. This result may give insight to the origin of both modularity and symmetry in biological organisms

    ESDA2008-59036 A NOVEL EVOLUTIONARY METHOD FOR SYNTHESIS OF 3D CONTINUOUS STRUCTURES

    Get PDF
    ABSTRACT The design of complex structures which benefit the usage of inhomogeneous properties is a very difficult task. In this paper we present a novel approach in which we synthesize the design of structures by mimicking two fundamental processes from biology -Evolution and Development. We will show that by using these two processes in a computational model, we are able to evolve high performance structures. These structures contain a high degree of complexity from a topological aspect and from a materials distribution aspect. This degree of complexity is difficult or even impossible to achieve by ordinary design methods

    Open-ended Search through Minimal Criterion Coevolution

    Get PDF
    Search processes guided by objectives are ubiquitous in machine learning. They iteratively reward artifacts based on their proximity to an optimization target, and terminate upon solution space convergence. Some recent studies take a different approach, capitalizing on the disconnect between mainstream methods in artificial intelligence and the field\u27s biological inspirations. Natural evolution has an unparalleled propensity for generating well-adapted artifacts, but these artifacts are decidedly non-convergent. This new class of non-objective algorithms induce a divergent search by rewarding solutions according to their novelty with respect to prior discoveries. While the diversity of resulting innovations exhibit marked parallels to natural evolution, the methods by which search is driven remain unnatural. In particular, nature has no need to characterize and enforce novelty; rather, it is guided by a single, simple constraint: survive long enough to reproduce. The key insight is that such a constraint, called the minimal criterion, can be harnessed in a coevolutionary context where two populations interact, finding novel ways to satisfy their reproductive constraint with respect to each other. Among the contributions of this dissertation, this approach, called minimal criterion coevolution (MCC), is the primary (1). MCC is initially demonstrated in a maze domain (2) where it evolves increasingly complex mazes and solutions. An enhancement to the initial domain (3) is then introduced, allowing mazes to expand unboundedly and validating MCC\u27s propensity for open-ended discovery. A more natural method of diversity preservation through resource limitation (4) is introduced and shown to maintain population diversity without comparing genetic distance. Finally, MCC is demonstrated in an evolutionary robotics domain (5) where it coevolves increasingly complex bodies with brain controllers to achieve principled locomotion. The overall benefit of these contributions is a novel, general, algorithmic framework for the continual production of open-ended dynamics without the need for a characterization of behavioral novelty

    Computational Evolutionary Embryogeny

    Full text link
    corecore